Abstract
We present a transpose-free version of the nonsymmetric scaled Lanczos procedure. It generates the same tridiagonal matrix as the classical algorithm, using two matrix–vector products per iteration without accessing AT. We apply this algorithm to obtain a transpose-free version of the Quasi-minimal residual method of Freund and Nachtigal [15] (without look-ahead), which requires three matrix–vector products per iteration. We also present a related transpose-free version of the bi-conjugate gradients algorithm.
Similar content being viewed by others
References
C. Brezinski and M. Redivo-Zaglia, Hybrid procedures forsolving linear systems, Numer. Math. 67(1) (1994) 1–19.
C. Brezinski and M. Redivo-Zaglia, Look-ahead in Bi-CGSTAB and other product methods for linear systems, BIT 35 (1995) 169–201.
C. Brezinski and M. Redivo-Zaglia, Transpose-free Lanczos-type algorithms for nonsymmetric linear systems, Numer. Algorithms 17 (1998), this issue.
C. Brezinski, M. Redivo-Zaglia and H. Sadok, Avoiding breakdown and near-breakdown in Lanczos type algorithms, Numer. Algorithms 1 (1991) 261–284.
C. Brezinski, M. Redivo-Zaglia and H. Sadok, A breakdown-free Lanczos type algorithm for solving linear systems, Numer. Math. 63 (1992) 29–38.
P. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput. 11(3) (1990) 450–481.
T.F. Chan, E. Gallopouls, V. Simoncini, T. Szeto and C.H. Tong, A quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comput. 15 (1994) 338–347.
T.F. Chan and K.R. Jackson, The use of iterative linear equation solvers in codes for large systems of stiff IVP's for ODEs, SIAM J. Sci. Statist. Comput. 7 (1986) 378–417.
T. Chronopoulos and S. Ma, On squaring Krylov subspace iterative methods for nonsymmetric linear systems, Technical Report 89–67, Computer Science Department, University of Minnesota (1989).
V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existance of a conjugate gradient method, SIAM J. Numer. Anal. 21 (1984) 352–362.
R. Fletcher, Conjugate Gradient Methods for Indefinite Systems, Lecture Notes in Mathematics 506 (Springer, Berlin, 1976).
D.R. Fokkema, G.L.G. Sleijpen and H.A. Van der Vorst, Generalized conjugate gradient squared, J. Comput. Appl. Math. 71 (1994) 125–146.
R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput. 14 (1993) 470–482.
R.W. Freund, M.H. Gutknecht and N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput. 13 (1992) 137–158.
R.W. Freund and N.M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60 (1991) 315–339.
R.W. Freund and T. Szeto, A transpose-free quasi-minimal residual squared algorithm for non-Hermitian linear systems, in: Advances in Computer Methods for Partial Differential Equations, Vol. 7, eds. R. Vichnevetsky, D. Knight and G. Richter (IMACS, 1992) pp. 258–264.
G.H. Golub and C.F. van Loan, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences (Johns Hopkins Univ. Press, Baltimore, MD, 3rd ed., 1996).
A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods, SIAM J. Matrix Anal. 18(3) (1997) 535–551.
L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325.
M.H. Gutknecht, The unsymmetric Lanczos algorithms and their relations to Padé approximation, continued fractions and the q-d algorithms, in: Proc.of the Copper Mountain Conf.on Iterative Methods (April 1990). Also available at http://www.scsc.ethz.ch/ mhg/pub/CooperMtn90.ps.Z and CooperMtn90–7.ps.Z.
M.H. Gutknecht, Variants of Bi-CGSTAB for matrices with complex spectrum, SIAM J. Sci. Comput. 14 (1993) 1020–1033.
C. Lanczos, Solution for systems of linear equations by minimized iteration, J. Res. Nat. Bur. Stand. 49 (1952) 33–53.
J. Meijerink and H.A. Van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric m-matrix, Math. Comp. 31 (1977) 148–162.
Y. Saad and M.H. Schultz, GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.
G.L.G. Sleijpen and D.R. Fokkema, BICGSTAB(ℓ) for linear equations involving unsymmetric matrices with complex spectrum, ETNA 1 (1993) 11–32.
G.L.G. Sleijpen and H.A. Van der Vorst, Reliable updated residuals in hybrid Bi-CG methods, Computing 56 (1996) 141–163.
P. Sonneveld, Cgs: A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10(1) (1989) 36–52.
H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Comput. 13 (1992) 631–644.
L.B. Wigton, D.P. Yu and N.J. Young, GMRES acceleration of computational fluid dynamics codes, in: AIAA Conf., Denver, CO (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chan, T.F., de Pillis, L. & van der Vorst, H. Transpose-free formulations of Lanczos-type methods for nonsymmetric linear systems. Numerical Algorithms 17, 51–66 (1998). https://doi.org/10.1023/A:1011637511962
Issue Date:
DOI: https://doi.org/10.1023/A:1011637511962