Abstract
The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2 LOO=0.937, q2 L50% O=0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.
Similar content being viewed by others
References
Kowall, N.W., Alzheimer Disease and Associated Disorders, 13 (1999) 11.
Fine, R.E., Alzheimer Disease and Associated Disorders, 13 (1999) 82.
Davies, P. and Maloney, A., Lancet, 2 (1976) 1403.
Terry, R.D., Masliah, E. and Salmon, D.P., Ann. Neurol., 30 (1991) 572.
Giacobini, E., Jpn J. Pharmacol., 74 (1997) 225.
Wagstaff, A.J. and McTavish, D., Drugs Aging, 4 (1994) 510.
Bryson, H.M. and Benfield, P., Drugs Aging, 10 (1997) 234.
Fulton, B. and Benfield, P., Drugs Aging, 9 (1996) 60.
Enz, A., Boddeke, H., Gray, J. and Spiegel, R., Ann. N.Y. Acad. Sci., 640 (1991) 272.
Inestrosa, N.C., Alvarez, A., Perez, C.A., Moreno, R.D., Vicente, M., Linker, C., Casanueva, O., I.; Soto, C. and Garrido, A., Neuron, 16 (1996) 881.
Giacobini, E.; Mori, F. and Lai, C.C., Ann. N.Y. Acad. Sci., 777 (1996) 393.
Taylor, P. and Lappi, S., Biochemistry, 14 (1975) 1989.
Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M. and Hirth, C., Eur. J. Biochem., 219 (1994) 155.
Contreras, J.M., Parrot, I., Sippl, W., Rival, Y.M. and Wermuth, C.G., J. Med. Chem. (2000) submitted.
Wermuth, C.G. and Exinger, A., Agressologie, 13 (1972) 285.
Sussman, J.L. and Silman, I., Science, 253 (1991) 872.
Harel, M. and Sussman, J.L., Proc. Natl. Acad. Sci. USA, 90 (1993) 9031.
Raves, M.L., Harel, M., Pang, Y.P., Silman, I., Kozikowski, A.P. and Sussman, J.L., Nat. Struct. Biol., 4 (1997) 57.
Tame, J.R.H., J. Comput. Aid. Mol. Des., 13 (1999) 99.
Böhm, H.J., J. Comput. Aid. Mol. Des., 12 (1998) 309.
Böhm, H.J., J. Comput. Aid. Mol. Des., 8 (1994) 243.
Wang, R., Liu, L., Lai, L. and Tang, Y., J. Mol. Model., 4 (1998) 379.
Ha, S., Andreani, R., Robbins, A. and Muegge, I., J. Comput. Aid. Mol. Des., 14 (2000) 435.
Waller, C.L., Oprea, T.I., Giolitti, A. and Marshall, G.R., J. Med. Chem., 36 (1993) 4152.
Ortiz, A.R., Pastor, M., Palomer, A., Cruciani. G¤ Gago, F. and Wade, R.C., J. Med. Chem., 40 (1997) 1136.
Cho, S.J, Garsia, M.L., Bier, J. and Tropsha, A., J. Med. Chem., 39 (1996) 5064.
Vaz, R.J., McLEan, L.R. and Pelton, J.T., J. Comput. Aid. Mol. Des., 12 (1998) 99.
Sippl, W., J. Comput. Aid. Mol. Des., 14 (2000) 559.
Contreras, J.M., Rival, Y., Chayer, S., Bourguignon, J.J. and Wermuth, C.G., J. Med. Chem., 42 (1999) 730.
Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, J. and Featherstone, R.M. Biochem. Pharmacol., 7 (1961) 88.
Allen, F.H., Kennard, O. and Watson, D.G., Struct. Correl., 1 (1994) 71.
Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P.J., J. Am. Chem. Soc. 106 (1984) 765.
Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 13 (1986) 230.
Singh, U.C. and Kollman, P.A., J. Comput. Chem., 5 (1984) 129.
Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.T. and McCammon, J.A., Comput. Phys. Commun., 91 (1995) 57.
Goodford, P.J., J. Med. Chem., 28 (1985) 849.
Morris, G.M., Goodsell, D.S., Huey, R. and Olson, A.J., J. Comput. Aid. Mol. Des., 8, (1994) 243.
Goodsell, D.S., Morris G.M. and Olson, A.J., J. Mol. Recognit., 9 (1996) 1.
Rao, M.J. and Olson, A.J., Prot. Struct. Funct. Gen., 34 (1999) 173.
PrGen 1.5.6, Biographics Laboratory, Basel, Switzerland.
Vedani, A. and Dunitz, J.D., J. Am. Chem. Soc., 107 (1985) 7653.
Vedani, A. and Huhta, D.W., J. Am. Chem. Soc., 112 (1990) 269.
GOLPE version 4.0, Multivariate Infometric Analysis, Perugia, Italy.
Baroni, M., Constantino, G., Cruciani, G., Riganelli, D, Valigli, R. and Clementi, S., Quant. Struct.-Act. Relat., 12 (1993) 9.
Cruciani, G. and Watson, K., J. Med. Chem., 37 (1994) 2589.
Pastor, M., Cruciani, G. and Clementi, S., J. Med. Chem. 40 (1997) 1455.
Oprea, T.I. and Garcia, A.E., J. Comput. Aid. Mol. Des., 10 (1996) 186.
Kryger, G., Silman, I. and Sussman, J.L., Structure Fold. Des. 15 (1999) 297.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sippl, W., Contreras, JM., Parrot, I. et al. Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors. J Comput Aided Mol Des 15, 395–410 (2001). https://doi.org/10.1023/A:1011150215288
Issue Date:
DOI: https://doi.org/10.1023/A:1011150215288