Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors | Journal of Computer-Aided Molecular Design Skip to main content

Advertisement

Log in

Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2 LOO=0.937, q2 L50% O=0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kowall, N.W., Alzheimer Disease and Associated Disorders, 13 (1999) 11.

    Google Scholar 

  2. Fine, R.E., Alzheimer Disease and Associated Disorders, 13 (1999) 82.

    Google Scholar 

  3. Davies, P. and Maloney, A., Lancet, 2 (1976) 1403.

    Google Scholar 

  4. Terry, R.D., Masliah, E. and Salmon, D.P., Ann. Neurol., 30 (1991) 572.

    Google Scholar 

  5. Giacobini, E., Jpn J. Pharmacol., 74 (1997) 225.

    Google Scholar 

  6. Wagstaff, A.J. and McTavish, D., Drugs Aging, 4 (1994) 510.

    Google Scholar 

  7. Bryson, H.M. and Benfield, P., Drugs Aging, 10 (1997) 234.

    Google Scholar 

  8. Fulton, B. and Benfield, P., Drugs Aging, 9 (1996) 60.

    Google Scholar 

  9. Enz, A., Boddeke, H., Gray, J. and Spiegel, R., Ann. N.Y. Acad. Sci., 640 (1991) 272.

    Google Scholar 

  10. Inestrosa, N.C., Alvarez, A., Perez, C.A., Moreno, R.D., Vicente, M., Linker, C., Casanueva, O., I.; Soto, C. and Garrido, A., Neuron, 16 (1996) 881.

    Google Scholar 

  11. Giacobini, E.; Mori, F. and Lai, C.C., Ann. N.Y. Acad. Sci., 777 (1996) 393.

    Google Scholar 

  12. Taylor, P. and Lappi, S., Biochemistry, 14 (1975) 1989.

    Google Scholar 

  13. Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M. and Hirth, C., Eur. J. Biochem., 219 (1994) 155.

    Google Scholar 

  14. Contreras, J.M., Parrot, I., Sippl, W., Rival, Y.M. and Wermuth, C.G., J. Med. Chem. (2000) submitted.

  15. Wermuth, C.G. and Exinger, A., Agressologie, 13 (1972) 285.

    Google Scholar 

  16. Sussman, J.L. and Silman, I., Science, 253 (1991) 872.

    Google Scholar 

  17. Harel, M. and Sussman, J.L., Proc. Natl. Acad. Sci. USA, 90 (1993) 9031.

    Google Scholar 

  18. Raves, M.L., Harel, M., Pang, Y.P., Silman, I., Kozikowski, A.P. and Sussman, J.L., Nat. Struct. Biol., 4 (1997) 57.

    Google Scholar 

  19. Tame, J.R.H., J. Comput. Aid. Mol. Des., 13 (1999) 99.

    Google Scholar 

  20. Böhm, H.J., J. Comput. Aid. Mol. Des., 12 (1998) 309.

    Google Scholar 

  21. Böhm, H.J., J. Comput. Aid. Mol. Des., 8 (1994) 243.

    Google Scholar 

  22. Wang, R., Liu, L., Lai, L. and Tang, Y., J. Mol. Model., 4 (1998) 379.

    Google Scholar 

  23. Ha, S., Andreani, R., Robbins, A. and Muegge, I., J. Comput. Aid. Mol. Des., 14 (2000) 435.

    Google Scholar 

  24. Waller, C.L., Oprea, T.I., Giolitti, A. and Marshall, G.R., J. Med. Chem., 36 (1993) 4152.

    Google Scholar 

  25. Ortiz, A.R., Pastor, M., Palomer, A., Cruciani. G¤ Gago, F. and Wade, R.C., J. Med. Chem., 40 (1997) 1136.

    Google Scholar 

  26. Cho, S.J, Garsia, M.L., Bier, J. and Tropsha, A., J. Med. Chem., 39 (1996) 5064.

    Google Scholar 

  27. Vaz, R.J., McLEan, L.R. and Pelton, J.T., J. Comput. Aid. Mol. Des., 12 (1998) 99.

    Google Scholar 

  28. Sippl, W., J. Comput. Aid. Mol. Des., 14 (2000) 559.

    Google Scholar 

  29. Contreras, J.M., Rival, Y., Chayer, S., Bourguignon, J.J. and Wermuth, C.G., J. Med. Chem., 42 (1999) 730.

    Google Scholar 

  30. Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, J. and Featherstone, R.M. Biochem. Pharmacol., 7 (1961) 88.

    Google Scholar 

  31. Allen, F.H., Kennard, O. and Watson, D.G., Struct. Correl., 1 (1994) 71.

    Google Scholar 

  32. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P.J., J. Am. Chem. Soc. 106 (1984) 765.

    Google Scholar 

  33. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 13 (1986) 230.

    Google Scholar 

  34. Singh, U.C. and Kollman, P.A., J. Comput. Chem., 5 (1984) 129.

    Google Scholar 

  35. Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.T. and McCammon, J.A., Comput. Phys. Commun., 91 (1995) 57.

    Google Scholar 

  36. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  37. Morris, G.M., Goodsell, D.S., Huey, R. and Olson, A.J., J. Comput. Aid. Mol. Des., 8, (1994) 243.

    Google Scholar 

  38. Goodsell, D.S., Morris G.M. and Olson, A.J., J. Mol. Recognit., 9 (1996) 1.

    Google Scholar 

  39. Rao, M.J. and Olson, A.J., Prot. Struct. Funct. Gen., 34 (1999) 173.

    Google Scholar 

  40. PrGen 1.5.6, Biographics Laboratory, Basel, Switzerland.

  41. Vedani, A. and Dunitz, J.D., J. Am. Chem. Soc., 107 (1985) 7653.

    Google Scholar 

  42. Vedani, A. and Huhta, D.W., J. Am. Chem. Soc., 112 (1990) 269.

    Google Scholar 

  43. GOLPE version 4.0, Multivariate Infometric Analysis, Perugia, Italy.

  44. Baroni, M., Constantino, G., Cruciani, G., Riganelli, D, Valigli, R. and Clementi, S., Quant. Struct.-Act. Relat., 12 (1993) 9.

    Google Scholar 

  45. Cruciani, G. and Watson, K., J. Med. Chem., 37 (1994) 2589.

    Google Scholar 

  46. Pastor, M., Cruciani, G. and Clementi, S., J. Med. Chem. 40 (1997) 1455.

    Google Scholar 

  47. Oprea, T.I. and Garcia, A.E., J. Comput. Aid. Mol. Des., 10 (1996) 186.

    Google Scholar 

  48. Kryger, G., Silman, I. and Sussman, J.L., Structure Fold. Des. 15 (1999) 297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sippl, W., Contreras, JM., Parrot, I. et al. Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors. J Comput Aided Mol Des 15, 395–410 (2001). https://doi.org/10.1023/A:1011150215288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011150215288

Navigation