Delete-m Jackknife for Unequal m | Statistics and Computing Skip to main content
Log in

Delete-m Jackknife for Unequal m

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this paper, the delete-mj jackknife estimator is proposed. This estimator is based on samples obtained from the original sample by successively removing mutually exclusive groups of unequal size. In a Monte Carlo simulation study, a hierarchical linear model was used to evaluate the role of nonnormal residuals and sample size on bias and efficiency of this estimator. It is shown that bias is reduced in exchange for a minor reduction in efficiency. The accompanying jackknife variance estimator even improves on both bias and efficiency, and, moreover, this estimator is mean-squared-error consistent, whereas the maximum likelihood equivalents are not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Busing, F. M. T. A. (1993) Distribution characteristics of variance estimates in two-level models; A Monte Carlo study (Tech. Rep. No. PRM 93-04). Leiden, The Netherlands: Leiden University, Department of Psychology.

    Google Scholar 

  • Busing, F. M. T. A., Meijer, E. and Van der Leeden, R. (1994) MLA, software for multilevel analysis of data with two levels. User's guide for version 1.0b (Tech. Rep. No. PRM 94-01). Leiden, The Netherlands: Leiden University, Department of Psychology.

    Google Scholar 

  • Efron, B. (1982) The jackknife, the bootstrap and other resampling plans. Philadelphia: SIAM.

    Google Scholar 

  • Goldstein, H. (1995) Multilevel statistical models (2nd ed.). Lon-don: Edward Arnold.

    Google Scholar 

  • Kreft, I. and de Leeuw, J. (1998) Introduction to multilevel mod-elling. London: Sage.

    Google Scholar 

  • Longford, N. T. (1993) Random coeffcient models. Oxford, GB: Clarendon Press.

    Google Scholar 

  • Lüscher, M. (1994) A portable high-quality random number generator for lattice field theory simulations. Computer Physics Communications, 79, 100-110.

    Google Scholar 

  • Magnus, J. R. (1978) Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covari-ance matrix. Journal of Econometrics, 7, 281-312.

    Google Scholar 

  • Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353-360.

    Google Scholar 

  • Schucany, W. R., Gray, H. L. and Owen, D. B. (1971) On bias reduction in estimation. Journal of the American Statistical Association, 66(335), 524-533.

    Google Scholar 

  • Searle, S. R., Casella, G. and McCulloch, C. E. (1992) Variance components. New York: Wiley.

    Google Scholar 

  • Shao, J. and Tu, D. (1995) The jackknife and bootstrap. New York: Springer.

    Google Scholar 

  • Tukey, J. W. (1958) Bias and confidence in not-quite large sam-ples. Annals of Mathematical Statistics, 29, 614.

    Google Scholar 

  • Wolter, K. M. (1985) Introduction to variance estimation. New York: Springer.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busing, F.M.T.A., Meijer, E. & Leeden, R.V.D. Delete-m Jackknife for Unequal m. Statistics and Computing 9, 3–8 (1999). https://doi.org/10.1023/A:1008800423698

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008800423698

Navigation