Cocyclic Generalised Hadamard Matrices and Central Relative Difference Sets | Designs, Codes and Cryptography Skip to main content
Log in

Cocyclic Generalised Hadamard Matrices and Central Relative Difference Sets

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Cocyclic matrices have the form \(M = [\psi (g,h)]_{g,h} \in G,\) where G is a finite group, C is a finite abelian group and ψ : G × G → C is a (two-dimensional) cocycle; that is,

$$\psi (g,h)\psi (gh,k) = \psi (g,hk)\psi (h,k),\forall g,h,k \in G.$$

This expression of the cocycle equation for finite groups as a square matrix allows us to link group cohomology, divisible designs with regular automorphism groups and relative difference sets. Let G have order v and C have order w, with w|v. We show that the existence of a G-cocyclic generalised Hadamard matrix GH (w, v/w) with entries in C is equivalent to the existence of a relative ( v, w, v, v/w)-difference set in a central extension E of C by G relative to the central subgroup C and, consequently, is equivalent to the existence of a (square) divisible ( v, w, v, v/w)-design, class regular with respect to C, with a central extension E of C as regular group of automorphisms. This provides a new technique for the construction of semiregular relative difference sets and transversal designs, and generalises several known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baliga and K. J. Horadam, Cocyclic matrices over Z t × Z /22 , Australas. J. Combin., Vol. 11 (1995) pp. 123-134.

    Google Scholar 

  2. T. Beth, D. Jungnickel and H. Lenz, Design Theory, CUP, Cambridge (1993).

    Google Scholar 

  3. A. T. Butson, Generalised Hadamard matrices, Proc. Amer. Math. Soc., Vol. 13 (1962) pp. 894-898.

    Google Scholar 

  4. C. J. Colbourn and J. H. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton (1996).

    Google Scholar 

  5. J. A. Davis and J. Jedwab, A unifying construction for difference sets, J. Combin. Theory Ser. A, Vol. 80 (1997) pp. 13-78.

    Article  Google Scholar 

  6. W. de Launey, Square GBRDs over non-abelian groups, Ars Combin., Vol. 27 (1989) pp. 40–49.

    Google Scholar 

  7. W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Australas. J. Combin., Vol. 1 (1990) pp. 67-81.

    Google Scholar 

  8. W. de Launey, Generalised Hadamard matrices which are developed modulo a group, Discrete Math., Vol. 104 (1992) pp. 49–65.

    Article  Google Scholar 

  9. W. de Launey and K. J. Horadam, A weak difference set construction for higher dimensional designs, Designs, Codes and Cryptography, Vol. 3 (1993) pp. 75-87.

    Google Scholar 

  10. D. A. Drake, Partial λ-geometries and generalised Hadamard matrices, Canad. J. Math.Vol. 31 (1979) pp. 617-627.

    Google Scholar 

  11. J. E. H. Elliott and A.T. Butson, Relative difference sets, Illinois J. Math., Vol.10 (1966) pp. 517-531.

    Google Scholar 

  12. D. L. Flannery, Transgression and the calculation of cocyclic matrices, Australas. J. Combin., Vol. 11 (1995) pp. 67-78.

    Google Scholar 

  13. D. L. Flannery, Calculation of cocyclic matrices, J. Pure Appl. Algebra, Vol. 112 (1996) pp. 181-190.

    Article  Google Scholar 

  14. K. J. Horadam, Progress in cocyclic matrices, Congr. Numer., Vol. 118 (1996) pp. 161-171.

    Google Scholar 

  15. K. J. Horadam, D. L. Flannery and W. de Launey, Cocyclic Hadamard matrices and difference sets, preprint.

  16. K. J. Horadam and W. de Launey, Cocyclic development of designs, J. Algebraic Combinatorics, Vol. 2 (1993) pp. 267-290, Erratum Vol. 3 (1994) pp. 129.

    Article  Google Scholar 

  17. K. J. Horadam and W. de Launey, Generation of cocyclic Hadamard matrices, Computational Algebra and Number Theory(W. Bosma, A. van der Poorten, eds.), Kluwer Academic, Dordrecht (1995).

    Google Scholar 

  18. D. Jungnickel, On automorphism groups of divisible designs, Canad. J. Math., Vol. 24 (1982) pp. 257-297.

    Google Scholar 

  19. G. Karpilovsky, Projective Representations of Finite Groups, Marcel Dekker, New York (1985).

    Google Scholar 

  20. S. L. Ma, Planar functions, relative difference sets, and character theory, J. Algebra, Vol. 185 (1996) pp. 342-356.

    Article  Google Scholar 

  21. S. L. Ma and A. Pott, Relative difference sets, planar functions and generalised Hadamard matrices, J. Algebra, Vol. 175 (1995) pp. 505–525.

    Article  Google Scholar 

  22. S. L. Ma and B. Schmidt, Relative (p a , p b , p a , p a−b)-difference sets: a unified exponent bound and a local ring construction, submitted.

  23. A. Pott, Finite Geometry and Character Theory, LNM 1601, Springer, Berlin (1995).

    Google Scholar 

  24. A. Pott, A survey on relative difference sets, Groups, Difference Sets and the Monster(K. T. Arasu et al., eds.), de Gruyter, New York (1996).

    Google Scholar 

  25. B. Schmidt, On (p a , p b , p a , p a−b)-relative difference sets, J. Algebraic Combinatorics, Vol. 6 (1997) pp. 279-297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perera, A.A.I., Horadam, K.J. Cocyclic Generalised Hadamard Matrices and Central Relative Difference Sets. Designs, Codes and Cryptography 15, 187–200 (1998). https://doi.org/10.1023/A:1008367718018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008367718018

Navigation