Abstract
Cocyclic matrices have the form \(M = [\psi (g,h)]_{g,h} \in G,\) where G is a finite group, C is a finite abelian group and ψ : G × G → C is a (two-dimensional) cocycle; that is,
This expression of the cocycle equation for finite groups as a square matrix allows us to link group cohomology, divisible designs with regular automorphism groups and relative difference sets. Let G have order v and C have order w, with w|v. We show that the existence of a G-cocyclic generalised Hadamard matrix GH (w, v/w) with entries in C is equivalent to the existence of a relative ( v, w, v, v/w)-difference set in a central extension E of C by G relative to the central subgroup C and, consequently, is equivalent to the existence of a (square) divisible ( v, w, v, v/w)-design, class regular with respect to C, with a central extension E of C as regular group of automorphisms. This provides a new technique for the construction of semiregular relative difference sets and transversal designs, and generalises several known results.
Similar content being viewed by others
References
A. Baliga and K. J. Horadam, Cocyclic matrices over Z t × Z /22 , Australas. J. Combin., Vol. 11 (1995) pp. 123-134.
T. Beth, D. Jungnickel and H. Lenz, Design Theory, CUP, Cambridge (1993).
A. T. Butson, Generalised Hadamard matrices, Proc. Amer. Math. Soc., Vol. 13 (1962) pp. 894-898.
C. J. Colbourn and J. H. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton (1996).
J. A. Davis and J. Jedwab, A unifying construction for difference sets, J. Combin. Theory Ser. A, Vol. 80 (1997) pp. 13-78.
W. de Launey, Square GBRDs over non-abelian groups, Ars Combin., Vol. 27 (1989) pp. 40–49.
W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Australas. J. Combin., Vol. 1 (1990) pp. 67-81.
W. de Launey, Generalised Hadamard matrices which are developed modulo a group, Discrete Math., Vol. 104 (1992) pp. 49–65.
W. de Launey and K. J. Horadam, A weak difference set construction for higher dimensional designs, Designs, Codes and Cryptography, Vol. 3 (1993) pp. 75-87.
D. A. Drake, Partial λ-geometries and generalised Hadamard matrices, Canad. J. Math.Vol. 31 (1979) pp. 617-627.
J. E. H. Elliott and A.T. Butson, Relative difference sets, Illinois J. Math., Vol.10 (1966) pp. 517-531.
D. L. Flannery, Transgression and the calculation of cocyclic matrices, Australas. J. Combin., Vol. 11 (1995) pp. 67-78.
D. L. Flannery, Calculation of cocyclic matrices, J. Pure Appl. Algebra, Vol. 112 (1996) pp. 181-190.
K. J. Horadam, Progress in cocyclic matrices, Congr. Numer., Vol. 118 (1996) pp. 161-171.
K. J. Horadam, D. L. Flannery and W. de Launey, Cocyclic Hadamard matrices and difference sets, preprint.
K. J. Horadam and W. de Launey, Cocyclic development of designs, J. Algebraic Combinatorics, Vol. 2 (1993) pp. 267-290, Erratum Vol. 3 (1994) pp. 129.
K. J. Horadam and W. de Launey, Generation of cocyclic Hadamard matrices, Computational Algebra and Number Theory(W. Bosma, A. van der Poorten, eds.), Kluwer Academic, Dordrecht (1995).
D. Jungnickel, On automorphism groups of divisible designs, Canad. J. Math., Vol. 24 (1982) pp. 257-297.
G. Karpilovsky, Projective Representations of Finite Groups, Marcel Dekker, New York (1985).
S. L. Ma, Planar functions, relative difference sets, and character theory, J. Algebra, Vol. 185 (1996) pp. 342-356.
S. L. Ma and A. Pott, Relative difference sets, planar functions and generalised Hadamard matrices, J. Algebra, Vol. 175 (1995) pp. 505–525.
S. L. Ma and B. Schmidt, Relative (p a , p b , p a , p a−b)-difference sets: a unified exponent bound and a local ring construction, submitted.
A. Pott, Finite Geometry and Character Theory, LNM 1601, Springer, Berlin (1995).
A. Pott, A survey on relative difference sets, Groups, Difference Sets and the Monster(K. T. Arasu et al., eds.), de Gruyter, New York (1996).
B. Schmidt, On (p a , p b , p a , p a−b)-relative difference sets, J. Algebraic Combinatorics, Vol. 6 (1997) pp. 279-297.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Perera, A.A.I., Horadam, K.J. Cocyclic Generalised Hadamard Matrices and Central Relative Difference Sets. Designs, Codes and Cryptography 15, 187–200 (1998). https://doi.org/10.1023/A:1008367718018
Issue Date:
DOI: https://doi.org/10.1023/A:1008367718018