Abstract
We study lower bounds on K(n,R), the minimum number of codewords of any binary code of length n such that the Hamming spheres of radius R with center at codewords cover the Hamming space \(\mathbb{F}_(\text(2))n \). We generalize Honkala's idea toobtain further improvements only by using some simple observationsof Zhang's result. This leads to nineteen improvements of thelower bound on K(n,R) within the range of \(1 \leqslant n \leqslant {\text{33, 1}} \leqslant R \leqslant {\text{10}}\).
Similar content being viewed by others
References
G. Cohen, I. S. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, Elsevier (1997).
L. Dongfeng and W. Chen, New lower bounds for binary covering codes, IEEE Trans. Inform. Theory, Vol. 40 (1994) pp. 1122-1129.
H. O. Hämäläinen, I. S. Honkala, M. K. Kaikkonen, and S. N. Litsyn, Bounds for binary multiple covering codes, Designs, Codes and Cryptography, Vol. 3 (1993) pp. 251-275.
I. S. Honkala, Lower bounds for binary covering codes, IEEE Trans. Inform. Theory, Vol. 34 (1988) pp. 326-329.
I. S. Honkala, Modified bounds for covering codes, IEEE Trans. Inform. Theory, Vol. 37 (1991) pp. 361-65.
X. Hou, New lower bounds for covering codes, IEEE Trans. Inform. Theory, Vol. 36 (1990) pp. 895-99.
X. Hou, An improved sphere bounds for covering codes with n = 3R + 2, IEEE Trans. Inform. Theory, Vol. 36 (1990) pp. 1476-1478.
S. M. Johnson, A new lower for coverings by rook domains, Utilitas Mathematica, Vol. 1 (1972) pp. 121-40.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, 2nd. edition, North-Holland, Amsterdam (1976).
P. R. J. Östergård, A new binary code of length 10 and covering radius 1, IEEE Trans. Inform. Theory, Vol. 37 (1991) pp. 179-180.
P. R. J. Östergård and H. O. Hämäläinen, New upper bounds for binary=ternary mixed covering codes, Designs, Codes and Cryptography, Vol. 11 (1997) pp. 151-178.
G. J. M. van Wee, Improved sphere bounds on the covering radius of codes, IEEE Trans. Inform. Theory, Vol. 34 (1988) pp. 237-245.
Z. Zhang, Linear inequality for covering codes: Part I-pair covering inequalities, IEEE Trans. Inform. Theory, Vol. 37 (1991) pp. 573-582.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bhandari, M.C., Chanduka, K.K.P. & Lal, A.K. On Lower Bounds For Covering Codes. Designs, Codes and Cryptography 15, 237–243 (1998). https://doi.org/10.1023/A:1008364924033
Issue Date:
DOI: https://doi.org/10.1023/A:1008364924033