Abstract
We show that the support of minimum Lee weight codewords having Hamming weight 5 in the Preparata code over Z4 form a 3-(2m,5,10) design for any odd integer m ≥ 3.
Similar content being viewed by others
References
W. O. Alltop, An infinite class of 4-designs, J. Combin. Theory., Vol. 6 (1969) pp. 320–322.
E. F. Assmus, Jr. and H. F. Mattson, Jr., New 5-designs, J. Combin. Theory., Vol. 6 (1969) pp. 122–151.
A. H. Baartmans, I. Bluskov, and V. Tonchev, The Preparata codes and a class of 4-designs, J. Combin. Designs, Vol. 2, No.3 (1994) pp. 167–170.
J. Bierbrauer, A new family of 4-designs, Graphs and Combinatorics, Vol. 11 (1995) pp. 209–211.
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The Z4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, Vol. 40 (1994) pp. 301–319.
M. Harada, New 5-designs constructed from the lifted Golay code over Z4, preprint, presented at the Recent Results Session of 1997 IEEE International Symposium on Information Theory, Ulm, Germany, June 29-July 4, 1997.
T. Helleseth and P. V. Kumar, The algebraic decoding of the Z4-linear Goethals code, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 2040–2048.
P. V. Kumar, T. Helleseth, and A. R. Calderbank, An upper bound for Weil exponential sums over Galois rings and its applications, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 456–468.
R. Lidl and H. Niederreiter, Finite Fields, Vol. 20 of Encyclopedia of Mathematics and Its Applications. Reading, MA: Addison-Wesley (1983).
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland (1977).
V. Tonchev, A class of Steiner 4-wise balanced designs derived from Preparata codes, J. Combin. Designs, Vol. 4, No.3 (1996) pp. 203–204.
K. Yang and T. Helleseth, On the weight hierarchy of the Preparata code over Z4, IEEE Trans. Inform. Theory, Vol. 43 (1997) pp. 1832–1842.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Helleseth, T., Kumar, P.V. & Yang, K. An Infinite Family of 3-Designs from Preparata Codes overZ4. Designs, Codes and Cryptography 15, 175–181 (1998). https://doi.org/10.1023/A:1008363617109
Issue Date:
DOI: https://doi.org/10.1023/A:1008363617109