An Infinite Family of 3-Designs from Preparata Codes overZ4 | Designs, Codes and Cryptography Skip to main content
Log in

An Infinite Family of 3-Designs from Preparata Codes overZ4

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We show that the support of minimum Lee weight codewords having Hamming weight 5 in the Preparata code over Z4 form a 3-(2m,5,10) design for any odd integer m ≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. O. Alltop, An infinite class of 4-designs, J. Combin. Theory., Vol. 6 (1969) pp. 320–322.

    Google Scholar 

  2. E. F. Assmus, Jr. and H. F. Mattson, Jr., New 5-designs, J. Combin. Theory., Vol. 6 (1969) pp. 122–151.

    Google Scholar 

  3. A. H. Baartmans, I. Bluskov, and V. Tonchev, The Preparata codes and a class of 4-designs, J. Combin. Designs, Vol. 2, No.3 (1994) pp. 167–170.

    Google Scholar 

  4. J. Bierbrauer, A new family of 4-designs, Graphs and Combinatorics, Vol. 11 (1995) pp. 209–211.

    Google Scholar 

  5. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The Z4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, Vol. 40 (1994) pp. 301–319.

    Article  Google Scholar 

  6. M. Harada, New 5-designs constructed from the lifted Golay code over Z4, preprint, presented at the Recent Results Session of 1997 IEEE International Symposium on Information Theory, Ulm, Germany, June 29-July 4, 1997.

  7. T. Helleseth and P. V. Kumar, The algebraic decoding of the Z4-linear Goethals code, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 2040–2048.

    Article  Google Scholar 

  8. P. V. Kumar, T. Helleseth, and A. R. Calderbank, An upper bound for Weil exponential sums over Galois rings and its applications, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 456–468.

    Google Scholar 

  9. R. Lidl and H. Niederreiter, Finite Fields, Vol. 20 of Encyclopedia of Mathematics and Its Applications. Reading, MA: Addison-Wesley (1983).

    Google Scholar 

  10. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland (1977).

  11. V. Tonchev, A class of Steiner 4-wise balanced designs derived from Preparata codes, J. Combin. Designs, Vol. 4, No.3 (1996) pp. 203–204.

    Article  Google Scholar 

  12. K. Yang and T. Helleseth, On the weight hierarchy of the Preparata code over Z4, IEEE Trans. Inform. Theory, Vol. 43 (1997) pp. 1832–1842.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helleseth, T., Kumar, P.V. & Yang, K. An Infinite Family of 3-Designs from Preparata Codes overZ4. Designs, Codes and Cryptography 15, 175–181 (1998). https://doi.org/10.1023/A:1008363617109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008363617109

Navigation