Abelian Difference Sets Without Self-conjugacy | Designs, Codes and Cryptography Skip to main content
Log in

Abelian Difference Sets Without Self-conjugacy

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We obtain some results that are useful to the study of abelian difference sets and relative difference sets in cases where the self-conjugacy assumption does not hold. As applications we investigate McFarland difference sets, which have parameters of the form v=qd+1( qd+ qd-1 +...+ q+2) ,k=qd( qd+qd-1+...+q+1) , λ = qd ( q(d-1)+q(d-2)+...+q+1), where q is a prime power andd a positive integer. Using our results, we characterize those abelian groups that admit a McFarland difference set of order k-λ = 81. We show that the Sylow 3-subgroup of the underlying abelian group must be elementary abelian. Our results fill two missing entries in Kopilovich's table with answer “no”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. T. Arasu, J. Davis, J. Jedwab, S. L. Ma, and R. L. McFarland, Exponent bounds for a family of abelian difference sets. Groups, Difference Sets and the Monster(K. T. Arasu, J. F. Dillon, K. Harada, S. K. Sehgal, R. L. Solomon, eds.), deGruyter Verlag, Berlin/New York (1996) pp. 129-143.

    Google Scholar 

  2. L. D. Baumert, Difference sets, SIAM J. Appl. Math., Vol. 17, No.4 (1969) pp. 826-833.

    Google Scholar 

  3. Th. D. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge Univ. Press, Cambridge (1986).

    Google Scholar 

  4. J. F. Dillon, Variation on a scheme of McFarland for noncyclic difference sets, J. Combin. Theory, Sec. A, Vol. 40 (1985) pp. 9-21.

    Google Scholar 

  5. D. Jungnickel, Difference sets, Contemporary Design Theory, (J. H. Dinitz and D. R. Stinson, eds.), Wiley, New York (1992) pp. 241-324.

    Google Scholar 

  6. L. E. Kopilovich, Difference sets in noncyclic abelian groups, Kibernetika, Vol. 2 (1989) pp. 20-23.

    Google Scholar 

  7. E. S. Lander, Symmetric Designs: An Algebraic Approach, Cambridge Univ. Press, Cambridge (1983).

    Google Scholar 

  8. S. L. Ma, Planar functions, relative difference sets, and character theory, J. Algebra, Vol. 185 (1996) pp. 342-356.

    Google Scholar 

  9. S. L. Ma and B. Schmidt, The structure of the abelian groups containing McFarland difference sets, J. Combin. Theory, Sec. A, Vol. 70 (1995) pp. 313-322.

    Google Scholar 

  10. R. L. McFarland, A family of difference sets in non-cyclic groups, J. Combin. Theory, Sec. A, Vol. 15 (1973) pp. 1-10.

    Google Scholar 

  11. B. Schmidt, Circulant Hadamard matrices: Overcoming non-self-conjugacy; preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arasu, K.T., Ma, S.L. Abelian Difference Sets Without Self-conjugacy. Designs, Codes and Cryptography 15, 223–230 (1998). https://doi.org/10.1023/A:1008323907194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008323907194

Navigation