Abstract
We obtain some results that are useful to the study of abelian difference sets and relative difference sets in cases where the self-conjugacy assumption does not hold. As applications we investigate McFarland difference sets, which have parameters of the form v=qd+1( qd+ qd-1 +...+ q+2) ,k=qd( qd+qd-1+...+q+1) , λ = qd ( q(d-1)+q(d-2)+...+q+1), where q is a prime power andd a positive integer. Using our results, we characterize those abelian groups that admit a McFarland difference set of order k-λ = 81. We show that the Sylow 3-subgroup of the underlying abelian group must be elementary abelian. Our results fill two missing entries in Kopilovich's table with answer “no”.
Similar content being viewed by others
References
K. T. Arasu, J. Davis, J. Jedwab, S. L. Ma, and R. L. McFarland, Exponent bounds for a family of abelian difference sets. Groups, Difference Sets and the Monster(K. T. Arasu, J. F. Dillon, K. Harada, S. K. Sehgal, R. L. Solomon, eds.), deGruyter Verlag, Berlin/New York (1996) pp. 129-143.
L. D. Baumert, Difference sets, SIAM J. Appl. Math., Vol. 17, No.4 (1969) pp. 826-833.
Th. D. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge Univ. Press, Cambridge (1986).
J. F. Dillon, Variation on a scheme of McFarland for noncyclic difference sets, J. Combin. Theory, Sec. A, Vol. 40 (1985) pp. 9-21.
D. Jungnickel, Difference sets, Contemporary Design Theory, (J. H. Dinitz and D. R. Stinson, eds.), Wiley, New York (1992) pp. 241-324.
L. E. Kopilovich, Difference sets in noncyclic abelian groups, Kibernetika, Vol. 2 (1989) pp. 20-23.
E. S. Lander, Symmetric Designs: An Algebraic Approach, Cambridge Univ. Press, Cambridge (1983).
S. L. Ma, Planar functions, relative difference sets, and character theory, J. Algebra, Vol. 185 (1996) pp. 342-356.
S. L. Ma and B. Schmidt, The structure of the abelian groups containing McFarland difference sets, J. Combin. Theory, Sec. A, Vol. 70 (1995) pp. 313-322.
R. L. McFarland, A family of difference sets in non-cyclic groups, J. Combin. Theory, Sec. A, Vol. 15 (1973) pp. 1-10.
B. Schmidt, Circulant Hadamard matrices: Overcoming non-self-conjugacy; preprint.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Arasu, K.T., Ma, S.L. Abelian Difference Sets Without Self-conjugacy. Designs, Codes and Cryptography 15, 223–230 (1998). https://doi.org/10.1023/A:1008323907194
Issue Date:
DOI: https://doi.org/10.1023/A:1008323907194