Two New Infinite Families of 3-Designs from Kerdock Codes over Z4 | Designs, Codes and Cryptography Skip to main content
Log in

Two New Infinite Families of 3-Designs from Kerdock Codes over Z4

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we show that the support of the codewords of each type in the Kerdock code of length 2m over Z4 form 3-designs for any odd integer \(m \geqslant 3\). In particular, twonew infinite families of 3-designs are obtained in this constructionfor any odd integer \(m \geqslant 3\). In particular, twonew infinite families of 3-designs are obtained in this constructionfor any odd integer \(m \geqslant 3\), whose parameters are \(v = 2^m ,k = 2^{m - 1} + 2^{m - 2} \pm 2^{\frac{{m - 3}}{2}} \),and \(\lambda = \frac{{k(k - 1)(k - 2)}}{{2^m - 2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Assmus, Jr. and H. F. Mattson, Jr., New 5-designs, J. Combin. Theory. Theory, Vol. 6 (1969) pp. 122-151.

    Google Scholar 

  2. C. J. Colbourn and J. H. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, CRC Press, pp. 47-66 (1996).

  3. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The Z 4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, Vol. 40 (1994) pp. 301-319.

    Article  Google Scholar 

  4. M. Harada, New 5-designs constructed from the lifted Golay code over Z 4, preprint, presented at the Recent Results Session of 1997 IEEE International Symposium on Information Theory, Ulm, Germany, June 29-July 4, 1997.

  5. T. Helleseth and P. V. Kumar, The algebraic decoding of the Z 4-linear Goethals code, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 2040-2048.

    Article  Google Scholar 

  6. T. Helleseth, P. V. Kumar, and K. Yang, An infinite family of 3-designs from Preparata Codes over Z 4, Designs, Codes and Cryptography, vol. 15 (1998) pp. 175-181.

    Google Scholar 

  7. P. V. Kumar, T. Helleseth, and A. R. Calderbank, An upper bound for Weil exponential sums over Galois rings and its applications, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 456-468.

    Article  Google Scholar 

  8. R. Lidl and H. Niederreiter, Finite Fields, Vol. 20 of Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading, MA (1983).

    Google Scholar 

  9. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland (1977).

  10. K. Yang, T. Helleseth, P. V. Kumar, and A. Shanbhag, On the weight hierarchy of Kerdock codes, IEEE Trans. Inform. Theory, Vol. 42 (1996) pp. 1587-1593.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Helleseth, T. Two New Infinite Families of 3-Designs from Kerdock Codes over Z4. Designs, Codes and Cryptography 15, 201–214 (1998). https://doi.org/10.1023/A:1008319818926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008319818926

Navigation