Abstract
In this paper we show that the support of the codewords of each type in the Kerdock code of length 2m over Z4 form 3-designs for any odd integer \(m \geqslant 3\). In particular, twonew infinite families of 3-designs are obtained in this constructionfor any odd integer \(m \geqslant 3\). In particular, twonew infinite families of 3-designs are obtained in this constructionfor any odd integer \(m \geqslant 3\), whose parameters are \(v = 2^m ,k = 2^{m - 1} + 2^{m - 2} \pm 2^{\frac{{m - 3}}{2}} \),and \(\lambda = \frac{{k(k - 1)(k - 2)}}{{2^m - 2}}\).
Similar content being viewed by others
References
E. F. Assmus, Jr. and H. F. Mattson, Jr., New 5-designs, J. Combin. Theory. Theory, Vol. 6 (1969) pp. 122-151.
C. J. Colbourn and J. H. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, CRC Press, pp. 47-66 (1996).
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The Z 4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, Vol. 40 (1994) pp. 301-319.
M. Harada, New 5-designs constructed from the lifted Golay code over Z 4, preprint, presented at the Recent Results Session of 1997 IEEE International Symposium on Information Theory, Ulm, Germany, June 29-July 4, 1997.
T. Helleseth and P. V. Kumar, The algebraic decoding of the Z 4-linear Goethals code, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 2040-2048.
T. Helleseth, P. V. Kumar, and K. Yang, An infinite family of 3-designs from Preparata Codes over Z 4, Designs, Codes and Cryptography, vol. 15 (1998) pp. 175-181.
P. V. Kumar, T. Helleseth, and A. R. Calderbank, An upper bound for Weil exponential sums over Galois rings and its applications, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 456-468.
R. Lidl and H. Niederreiter, Finite Fields, Vol. 20 of Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading, MA (1983).
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland (1977).
K. Yang, T. Helleseth, P. V. Kumar, and A. Shanbhag, On the weight hierarchy of Kerdock codes, IEEE Trans. Inform. Theory, Vol. 42 (1996) pp. 1587-1593.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Yang, K., Helleseth, T. Two New Infinite Families of 3-Designs from Kerdock Codes over Z4. Designs, Codes and Cryptography 15, 201–214 (1998). https://doi.org/10.1023/A:1008319818926
Issue Date:
DOI: https://doi.org/10.1023/A:1008319818926