Abstract
It is shown that A(22,10) ≥ 50, A(23,10) ≥ 76, A(25,10) ≥ 166, A(26,10) ≥ 270, A(29,10) ≥ 1460, and A(28,12) ≥ 178, where A(n,d) denotes the maximum cardinality of a binary code of length n and minimum Hamming distance d. The constructed codes are invariant under permutations of some affine (or closely related) permutation group and have been found using computer search.
Similar content being viewed by others
References
A.E. Brouwer, A few new constant weight codes, IEEE Trans. Inform. Theory, Vol. 26 (1980) pp. 366.
A.E. Brouwer, J.B. Shearer, N.J.A. Sloane and D. Smith: A new table of constant weight codes, IEEE Trans. Inform. Theory, Vol. 36 (1990) pp. 1334–1380.
F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam (1977).
K.J. Nurmela, M.K. Kaikkonen and P.R.J. Östergård: New constant weight codes from permutation groups, IEEE Trans. Inform. Theory, Vol. 43 (1997) pp. 1623-1630.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kaikkonen, M. Codes from Affine Permutation Groups. Designs, Codes and Cryptography 15, 183–186 (1998). https://doi.org/10.1023/A:1008315701179
Issue Date:
DOI: https://doi.org/10.1023/A:1008315701179