Abstract
We consider upper bounds on two fundamental parameters of a code; minimum distance and covering radius. New upper bounds on the covering radius of non-binary linear codes are derived by generalizing a method due to S. Litsyn and A. Tietäväinen lt:newu and combining it with a new upper bound on the asymptotic information rate of non-binary codes. The upper bound on the information rate is an application of a shortening method of a code and is an analogue of the Shannon-Gallager-Berlekamp straight line bound on error probability. These results improve on the best presently known asymptotic upper bounds on minimum distance and covering radius of non-binary codes in certain intervals.
Similar content being viewed by others
References
M. Aaltonen, Bounds on the information rate of a tree code as a function on the code's feedback decoding minimum distance, Ann. Univ. Turku. Ser. A I, Vol. 181 (1981).
M. Aaltonen, A new upper bound on nonbinary block codes, Discrete Math., Vol. 83 (1990), pp. 139-160.
F. R. K. Chung, V. Faber and T. A. Manteuffel, An upper bound on the diameter of a graph from eigenvalues associated with its Laplacian, SIAM J. Discr. Math., Vol. 7 (1994) pp. 443-457.
G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, Elsevier, Amsterdam (1997).
G. Cohen, S. Litsyn, A. Lobstein and H. Mattson, Jr., Covering radius 1985-1994, Applicable Algebra in Engineering, Communication and Computing, Vol. 8 (1997) pp. 173-239.
C. Delorme and P. Solé, Diameter, covering index, covering radius and eigenvalues, Europ. J. Combin., Vol 12 (1991) pp. 95-108.
P. Delsarte, Four fundamental parameters of a code and their combinatorial significance, Information and Control, Vol. 23 (1973) pp. 407-438.
T. Helleseth, T. Kløve, and J. Mykkeltveit, On the covering radius of binary codes, IEEE Trans. Inform. Theory, Vol. 24 (1978) pp. 627-628.
I. Honkala, S. Litsyn, and A. Tietäväinen, On algebraic methods in covering radius problems, In: Cohen, G., Giusti M., Mora, T. (eds.) Applied Algebra, Albegraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science, Vol 948. Berlin, Heidelberg, New York: Springer (1995).
J. van Lint, Introduction to Coding Theory, Springer-Verlag, Berlin, Heidelberg, New York (1982).
S. Litsyn and A. Tietäväinen, Upper bounds on the covering radius of a code with a given dual distance, Europ. J. Combin., vol. 17 (1996) pp. 265-270.
A. Lubotszky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica, Vol. 8 (1988) pp. 261-277.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977).
R. McEliece, E. Rodemich, H. Jr. Rumsey and L. Welch, New upper bounds on the rate of a code via Delsarte-MacWilliams inequalities, IEEE Trans. Inform. Theory, Vol. 23 (1977) pp. 157-167.
T. Rivlin, The Chebyshev polynomials, John Wiley & Sons, New York (1974).
C. E. Shannon, R. G. Gallager and E. R. Berlekamp, Lower bounds to error probability for coding on discrete memoryless channels. II, Information and Control, Vol. 10, (1967), pp. 522-552.
P. Solé, Asymptotic bounds on the covering radius of binary codes, IEEE Trans. Inform. Theory, Vol. 36, (1990), pp. 1470-1472.
P. Solé and K. Mehrotra, Generalization of the Norse bounds to codes of higher strength, IEEE Trans. Inform. Theory, Vol. 37 (1991) pp. 190-192.
P. Solé and P. Stokes, Covering radius, codimension, and dual-distance width, IEEE Trans. Inform. Theory, Vol. 39 (1993) pp. 1195-1203.
G. Szegö, Orthogonal Polynomials, Colloquium Publications, vol. 23, American Math. Soc., Providence, RI (1975).
A. Tietäväinen, An upper bound on the covering radius as a function of its dual distance, IEEE Trans. Inform. Theory, Vol. 36 (1990) pp. 1472-1474.
A. Tietäväinen, Covering radius and dual distance, Designs, Codes and Cryptography, Vol. 1 (1991) pp. 31-46.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Laihonen, T., Litsyn, S. On Upper Bounds for Minimum Distance and Covering Radius of Non-binary Codes. Designs, Codes and Cryptography 14, 71–80 (1998). https://doi.org/10.1023/A:1008260505585
Issue Date:
DOI: https://doi.org/10.1023/A:1008260505585