Unitals and Unitary Polarities in Symmetric Designs | Designs, Codes and Cryptography Skip to main content
Log in

Unitals and Unitary Polarities in Symmetric Designs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We extend the notion of unital as well as unitary polarity from finite projective planes to arbitrary symmetric designs. The existence of unitals in several families of symmetric designs has been proved. It is shown that if a unital in a point-hyperplane design PG d-1(d,q) exists, then d = 2 or 3; in particular, unitals and ovoids are equivalent in case d = 3. Moreover, unitals have been found in two designs having the same parameters as the PG 4(5,2), although the latter does not have a unital. It had been not known whether or not a nonclassical design exists, which has a unitary polarity. Fortunately, we have discovered a unitary polarity in a symmetric 2-(45,12,3) design. To a certain extent this example seems to be exceptional for designs with these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Assmus, Jr., J. A. Mezzaroba and C. J. Salwach, Planes and biplanes, in M. Aigner (ed.), Higher Combinatorics, D. Reidel, Dordrecht (1977) pp. 205–212.

    Google Scholar 

  2. S. Bagchi and B. Bagchi, Designs from pairs of finite fields. I. A cyclic unital U(6) and other regular Steiner 2-designs, J. Comb. Theory A, Vol. 52 (1989) pp. 51–61.

    Google Scholar 

  3. T. Beth, D. Jungnickel and H. Lenz, Design Theory, B.I.-Wissenschaftsverlag, Mannheim (1985).

    Google Scholar 

  4. V. N. Bhat and S. S. Shrikhande, Non-isomorphic solutions of some balanced incomplete block designs. I, J. Comb. Theory A, Vol. 9 (1970) pp. 174–191.

    Google Scholar 

  5. A. E. Brouwer, Some unitals on 28 points and their embeddings in projective planes of order 9, in M. Aigner and D. Jungnickel (eds.), Geometries and Groups, Lecture Notes in Mathematics, Springer, Berlin, 893 (1981) pp. 183–188.

    Google Scholar 

  6. P. Dembowski, Finite Geometries, Springer, Berlin-Heidelberg-New York (1968).

    Google Scholar 

  7. R. H. F. Denniston, On biplanes with 56 points, Ars Combin, Vol. 9 (1980) pp. 167–179.

    Google Scholar 

  8. M. Hall, Jr., A survey of difference sets, Proc. Amer. Math. Soc., Vol. 7 (1956) pp. 975–986.

    Google Scholar 

  9. M. Hall, Jr., Combinatorial Theory, 2nd Ed. Wiley, New York (1986).

    Google Scholar 

  10. M. Hall, Jr., R. Lanes and D. Wales, Designs derived from permutation groups, J. Comb. Theory A, Vol. 8 (1970) pp. 12–22.

    Google Scholar 

  11. D. R. Hughes and F. C. Piper, Projective Planes, Springer, New York (1973).

    Google Scholar 

  12. D. R. Hughes and F. C. Piper, Design theory, Cambridge University Press, Cambridge (1985).

    Google Scholar 

  13. Z. Janko and Tran van Trung, A new biplane of order 9 with a small automorphism group, J. Comb. Theory A, Vol. 42 (1986) pp. 305–309.

    Google Scholar 

  14. D. Jungnickel, On subdesigns of symmetric designs, Math. Z., Vol. 181 (1982) pp. 383–393.

    Google Scholar 

  15. H. Lenz and D. Jungnickel, On a class of symmetric designs, Arch. Math., Vol. 33 (1979) pp. 590–592.

    Google Scholar 

  16. R. Mathon, Constructions for cyclic Steiner 2-designs, Ann. Discrete Math., Vol. 34 (1987) pp. 353–362.

    Google Scholar 

  17. R. Mathon, Computational methods in design theory, in A. D. KKeedwell (ed.) Surveys in Combinatorics, London Math. Soc. Lecture Notes 166 (1991) pp. 101–117.

  18. R. Mathon and E. Spence, On 2-(45,12,3) designs, J. Combin. Des., Vol. 4 (1996) pp. 155–175.

    Google Scholar 

  19. R. L. McFarland, A family of difference sets in non-cyclic groups, J. Comb. Theory A, Vol. 15 (1973) pp. 1–10.

    Google Scholar 

  20. P. K. Menon, On difference sets whose parameters satisfy a certain relation, Proc. Amer. Math. Soc., Vol. 13 (1962) pp. 739–745.

    Google Scholar 

  21. H. K. Nandi, A further note on nonisomorphic solutions of incomplete block designs, Sankhyā, Vol. 7 (1945–46), pp. 313–316.

    Google Scholar 

  22. F. C. Piper, Unitary block designs, in R. J. Wilson (ed.), Graph Theory and Combinatorics, Research Notes in Math. 34.

  23. M. J. de Resmini, On sets of type (m,n) in BIBD's with λ ≥ 2, Ann. Discr. Math., Vol. 14 (1982) pp. 183–206.

    Google Scholar 

  24. S. S. Shrikhande, On a two-parameter family of balanced incomplete block designs, Sankhyā A, Vol. 24 (1962) pp. 33–40.

    Google Scholar 

  25. R. G. Stanton and D. A. Sprott, A family of difference sets, Canad. J. Math., Vol. 10 (1958) pp. 73–77.

    Google Scholar 

  26. E. Spence, A family of difference sets in non-cyclic groups, J. Comb. Theory A, Vol. 22 (1977) pp. 103–106.

    Google Scholar 

  27. Tran van Trung, The existence of symmetric block designs with parameters (41,16,6) and (66,26,10), J. Comb. Theory A, Vol. 33 (1982) pp. 201–204.

    Google Scholar 

  28. W. D. Wallis, Construction of strongly regular graphs using affine designs, Bull. Austr. Math. Soc., Vol. 4 (1971) pp. 41–49.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathon, R., van Trung, T. Unitals and Unitary Polarities in Symmetric Designs. Designs, Codes and Cryptography 10, 237–250 (1997). https://doi.org/10.1023/A:1008252622458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008252622458

Navigation