Check Character Systems Using Chevalley Groups | Designs, Codes and Cryptography Skip to main content
Log in

Check Character Systems Using Chevalley Groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We show that the Sylow 2-subgroups of nearly all Chevalley groups in even characteristic allow the definition of a check-character-system which detects all single and the most important double errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Carter, Simple Groups of Lie Type, Wiley (1972).

  2. D. Gorenstein, Finite Groups, Harper and Row (1968).

  3. G. Higman, Suzuki-2-groups, Illinois J. Math., Vol. 7 (1963) pp. 79–96.

    Google Scholar 

  4. B. Huppert and N. Blackburn, Finite Groups II, Springer V., Berlin etc. (1982).

    Google Scholar 

  5. B. Huppert and N. Blackburn, Finite Groups III, Springer V., Berlin etc. (1982).

    Google Scholar 

  6. P. Rowley, Finite groups admitting a fixed point free automorphism group, J. Algebra, Vol. 174 (1995) pp. 724–727.

    Google Scholar 

  7. R. Schauffler, Über die Bildung von Codewörtern, Arch. Elektr. Übertragung, Vol. 10,No. 7 (1956) pp. 303–314.

    Google Scholar 

  8. R.-H. Schulz, Codierungstheorie, Vieweg Verlag, pp. 58–62 (1991).

  9. R.-H. Schulz, Check character systems over groups and orthogonal Latin squares, Applic. Algebra in Eng., Comm. and Computing, AAECC, Vol. 7 (1996) pp. 125–132.

  10. M. Suzuki, On a class of doubly transitive groups, Annals of Math., Vol. 75,No. 1 (1962) pp. 105–145.

    Google Scholar 

  11. J. Verhoeff, Error Detecting Decimal Codes, Math. Centre Tracts, Vol. 29, Math. Centrum Amsterdam (1969).

  12. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys., Vol. 3 (1892) pp. 265–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broecker, C., Schulz, RH. & Stroth, G. Check Character Systems Using Chevalley Groups. Designs, Codes and Cryptography 10, 137–143 (1997). https://doi.org/10.1023/A:1008236218824

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008236218824

Navigation