Abstract
We show that the Sylow 2-subgroups of nearly all Chevalley groups in even characteristic allow the definition of a check-character-system which detects all single and the most important double errors.
Similar content being viewed by others
References
R. Carter, Simple Groups of Lie Type, Wiley (1972).
D. Gorenstein, Finite Groups, Harper and Row (1968).
G. Higman, Suzuki-2-groups, Illinois J. Math., Vol. 7 (1963) pp. 79–96.
B. Huppert and N. Blackburn, Finite Groups II, Springer V., Berlin etc. (1982).
B. Huppert and N. Blackburn, Finite Groups III, Springer V., Berlin etc. (1982).
P. Rowley, Finite groups admitting a fixed point free automorphism group, J. Algebra, Vol. 174 (1995) pp. 724–727.
R. Schauffler, Über die Bildung von Codewörtern, Arch. Elektr. Übertragung, Vol. 10,No. 7 (1956) pp. 303–314.
R.-H. Schulz, Codierungstheorie, Vieweg Verlag, pp. 58–62 (1991).
R.-H. Schulz, Check character systems over groups and orthogonal Latin squares, Applic. Algebra in Eng., Comm. and Computing, AAECC, Vol. 7 (1996) pp. 125–132.
M. Suzuki, On a class of doubly transitive groups, Annals of Math., Vol. 75,No. 1 (1962) pp. 105–145.
J. Verhoeff, Error Detecting Decimal Codes, Math. Centre Tracts, Vol. 29, Math. Centrum Amsterdam (1969).
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys., Vol. 3 (1892) pp. 265–284.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Broecker, C., Schulz, RH. & Stroth, G. Check Character Systems Using Chevalley Groups. Designs, Codes and Cryptography 10, 137–143 (1997). https://doi.org/10.1023/A:1008236218824
Issue Date:
DOI: https://doi.org/10.1023/A:1008236218824