Abstract
The weight hierarchy of a linear [n,k;q] code C over GF(q) is the sequence (d1,d2,...,dk) where dr is the smallest support of an r–dimensional subcode of C. By explicit construction, it is shown that if a sequence (a1,a2,...,ak) satisfies certain conditions, then it is the weight hierarchy of a code satisfying the chain condition.
Similar content being viewed by others
References
A. I. Barbero and J. G. Tena, Weight hierarchy of a product code, IEEE Trans. Inform. Theory, Vol. 41, No.5 (1995) pp. 1475-1479.
W. Chen and T. Kløve, The weight hierarchies of q-ary codes of dimension 4, IEEE Trans. Inform. Theory, Vol. 42, No.6 (1996) pp. 2265-2272.
S. Encheva and T. Kløve, Codes satisfying the chain condition, IEEE Trans. Inform. Theory, Vol. 40, No.1 (1994) pp. 175-180.
G. D. Forney, Dimension/length profiles and trellis complexity of linear block codes, IEEE Trans. Inform. Theory, Vol. 40, No.6 (1994) pp. 1741-1752.
T. Helleseth and T. Kløve, The weight hierarchies of some product codes, IEEE Trans. Inform. Theory, Vol. 42, No.3 (1996) pp. 1029-1034.
T. Helleseth, T. Kløve and Ø. Ytrehus, Generalized Hamming weights of linear codes, IEEE Trans. Inform. Theory, Vol. 38, No.3 (1992) pp. 1133-1140.
T. Kasami, T. Takata, T. Fujiwara and S. Lin, On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codes, IEEE Trans. Inform. Theory, Vol. 39, No.1 (1993) pp. 242-243.
A. Vardy and Y. Be'ery, Maximum-likelihood soft decision decoding of BCH codes, IEEE Trans. Inform. Theory, Vol. 40, No.2 (1994) pp. 546-554.
V. K. Wei and K. Yang, On the generalized Hamming weights of product codes, IEEE Trans. Inform. Theory, Vol. 39, No.5 (1993) pp. 1709-1713.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chen, W., Klove, T. Weight Hierarchies of Linear Codes Satisfying the Chain Condition. Designs, Codes and Cryptography 15, 47–66 (1998). https://doi.org/10.1023/A:1008225524987
Issue Date:
DOI: https://doi.org/10.1023/A:1008225524987