3D-QSAR using `Multiconformer' alignment: The use of HASL in the analysis of 5-HT1A thienopyrimidinone ligands† | Journal of Computer-Aided Molecular Design
Skip to main content

Advertisement

3D-QSAR using `Multiconformer' alignment: The use of HASL in the analysis of 5-HT1A thienopyrimidinone ligands†

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The observed 5-HT1A and α1-adrenergic receptor (α1-AR) receptor binding properties of a series of 23 thienopyrimidinones were used to develop HASL 3D-QSAR models. A single, low energy conformer of the most active analogue in the series, which was consistent with NMR structural studies, was chosen as a template molecule. Alignments of all the molecules to the template were provided by an Amber/MM2 superposition force field. In this manner, each molecule was represented by five separate low energy conformers which were subsequently used in the generation of HASL 3D-QSAR models. Models derived from multiple conformers were found to exhibit enhanced predictivity compared to models based on single, low energy conformers. In addition, the use of contour imaging of HASL multi-conformer model interactions was found to lead to a more consistent interpretation of those molecular features most significant for 5-HT1A receptor binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zifa, E. and Fillion, G., Pharmacol. Rev., 44 (1992) 401.

    Google Scholar 

  2. Data from Trends in Pharmacological Sciences Receptor Nomenclature Supplement (1996).

  3. England, L.J., Imperial, J., Jacobsen, R., Craig, A.G., Gulyas, J., Akhtar, M., Rivier, J., Julius, D. and Olivera, B.M., Science, 281 (1998) 575.

    Google Scholar 

  4. Agarwal, A., Pearson, P.P., Taylor, E.W., Li, H.B., Dahlgren, T., Herslöf, M., Yang, Y., Lambert, G., Nelson, D.L., Regan, J.W. and Martin, A.R., J. Med. Chem., 36 (1993) 4006.

    Google Scholar 

  5. Fargin, A., Raymond, J.R., Lohse, M.J., Kobilka, B.K., Caron, M.G. and Lefkowitz, R.J., Nature, 335 (1988) 358.

    Google Scholar 

  6. Hoflack, J., Trumpp-Kallmeyer, S. and Hilbert, M.F., In Kubinyi, H. (Ed.), 3D QSAR in Drug Design. Theory Methods and Applications, ESCOM, Leiden, 1993, pp. 355–372.

    Google Scholar 

  7. Kuipers, W., van Wijngarden, I. and IJzerman, A.P., Drug. Des. Discov., 11 (1994) 231.

    Google Scholar 

  8. Broekkamp, C.L., Leysen, D., Peeters, B.W. and Pinder, R.M., J. Med. Chem., 38 (1995) 4615.

    Google Scholar 

  9. Blier, P. and de Montigny C., Trends Pharmacol. Sci., 15 (1994) 220.

    Google Scholar 

  10. Gaillard, P., Carrupt, P-A., Test, B. and Schambel, P., J. Med. Chem., 39 (1996) 126.

    Google Scholar 

  11. Cox, A.G., Taylor, E.W., Agarwal, A., Li, H.B., Yang, Y. and Martin, A.R., Book of Abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24 (1995).

  12. Agarwal, A., Pearson, P.P., Taylor, E.W., Li, H.B., Dahlgren, T., Herslof, M., Yang, Y., Lambert, G., Nelson, D. et al., J. Med. Chem., 36 (1993) 4006.

    Google Scholar 

  13. Modica, M., Santagati, M., Russo, F., Parotti, L., De Gioia, L., Selvaggini, C., Salmona, M. and Mennini, T., J. Med. Chem., 40 (1997) 574.

    Google Scholar 

  14. Santagati, M., Doweyko, A., Santagati, A., Modica, M., Guccione, S., Chen, H.M., Uccello Barretta, G. and Balzano, F., In Gundertofte, K. and Jorgensen, F.S. (Eds), Molecular Modelling and Prediction of Bioactivity-Proceedings of the 12th European Symposium on Quantitative Structure-Activity Relationships-Copenhagen, Denmark, August 23–28, 1998, Plenum Publishing Corporation, 1999, pp. 185–196.

  15. Doweyko, A.M., J. Med. Chem., 31 (1988) 1396.

    Google Scholar 

  16. Doweyko, A.M., J. Med. Chem., 37 (1994) 1769.

    Google Scholar 

  17. Kaminski, J.J. and Doweyko, A.M., J. Med. Chem., 40 (1997) 427.

    Google Scholar 

  18. Doweyko, A.M and Avery, M.A., J. Comput.-Aided Mol. Design, 12 (1998) 165.

    Google Scholar 

  19. a. HASL 3.30 (pc) and source code for UNIX is available from Hypothesis Software, Long Valley, NJ, USA. b. The Sybyl-interfaced version of HASL (Version 4.00S for SGI platforms) is available from eduSoft, LC, P.O. Box 1811, Richmond, VA 23005, USA and has several innovative features that take unique advantage of the power of Sybyl to create HASL models and graphically examine the model results. It includes an expanded parameter set that allows two values per atom type, a new cross-validation routine, interfaces to HINT and Molconn-Z, and new map contouring algorithms that provide a novel and informative view of the HASL model results.

  20. SPARTAN version 5.0.3., Wavefunction, Inc., Irvine, CA, USA.

  21. McMartin, C. and Bohacek, R.S., J. Comput.-Aided Mol. Design, 11 (1997) 333.

    Google Scholar 

  22. QXP is the molecular mechanics module in FLO96, a molecular design program commercially available from Colin Mc-Martin, Thistlesoft, P.O. Box 227, Colebrook, CT 06021, USA.

  23. SYBYL Molecular Modelling Software version 6.3 and 6.5, Tripos Inc., St. Louis, MO, USA.

  24. Hopfinger, A.J., Wang, S., Tokarski, J.S., Baiqiang, J., Albuquerque, M., Madhav, M., Prakash, J. and Duraiswami, C., J. Am. Chem. Soc., 119 (1997) 10509.

    Google Scholar 

  25. Dammkoehler, R.A., Karasek, S.F., Shands, E.F.B. and Marshall, G.R., J. Comput.-Aided Mol. Design, 3 (1989) 3.

    Google Scholar 

  26. Clark, M., Cramer III, R.D., Jones, D.M., Patterson, D.E. and Simeroth, P.E., Tetrahedron Comput. Methodol., 3 (1990) 47. b. Smith, G., SEA: Steric and Electrostatic Alignment Molecular Superposition Program; QCPE Program No. 567; Department of Chemistry, Indiana University, Bloomington, IN, USA.

    Google Scholar 

  27. Nicklaus, M.C., Shaomeng, W., Driscoll, J.S. and Milne, W.A., Bioorg. Med. Chem., 3 (1995) 411.

    Google Scholar 

  28. Allen, F.H., In Domenicano, A. and Hargittai, I. (Eds), Accurate Molecular Structures, Oxford University Press, Oxford, 1992, p. 355.

    Google Scholar 

  29. Langer, T. and Hoffmann, R.D., J. Chem. Inf. Comput. Sci., 38 (1998) 325.

    Google Scholar 

  30. Lemmen, C., Hiller, C. and Lengauer, T., J. Comput.-Aided Mol. Design, 12 (1998) 491.

    Google Scholar 

  31. Klebe, G., Mietzner, T. and Weber, F., J. Comput.-Aided Mol. Design, 13 (1999) 35.

    Google Scholar 

  32. Kazuhiko, I. and Shuichi, H., J. Comput.-Aided Mol. Design, 13 (1999) 499.

    Google Scholar 

  33. Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, I. and Pavlik, A.J., J. Comput.-Aided Mol. Design, 7 (1993) 83.

    Google Scholar 

  34. Jain, A.N., Harris, N.L. and Park, J.Y., J. Med. Chem., 38 (1995) 1295.

    Google Scholar 

  35. Baroni, M., Costantino, G., Riganelli, D., Valigi, R. and Clementi, S., Quant. Struct.-Act. Relat., 12 (1993) 9.

    Google Scholar 

  36. Santagati, A., Longmore, J., Guccione, S., Langer, T., Tonnel, E., Modica, M., Santagati, M., Monsù Scolaro, L. and Russo, F., Eur. J. Med. Chem., 32 (1997) 973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Guccione, S., Doweyko, A.M., Chen, H. et al. 3D-QSAR using `Multiconformer' alignment: The use of HASL in the analysis of 5-HT1A thienopyrimidinone ligands†. J Comput Aided Mol Des 14, 647–657 (2000). https://doi.org/10.1023/A:1008136325544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008136325544