Parallel Partial Stabilizing Algorithms for Large Linear Control Systems | The Journal of Supercomputing Skip to main content
Log in

Parallel Partial Stabilizing Algorithms for Large Linear Control Systems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper we present parallel algorithms for stabilizing large linear control systems on multicomputers. Our algorithms first separate the stable part of the linear control system and then compute a stabilizing feedback for the unstable part. Both stages are solved by means of the matrix sign function which presents a high degree of parallelism and scalability.

The experimental results on an IBM SP2 platform show the performance of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Anderson et al. LAPACK Users' Guide, 2nd ed. SIAM, Philadelphia, 1994.

    Google Scholar 

  2. E. S. Armstrong. An extension of Bass' algorithm for stabilizing linear continuous constant systems. IEEE Trans. Automat. Control, AC-20: 153-154, 1975.

    Google Scholar 

  3. M. Arnold. Algorithms and conditioning for eigenvalue assignment. Master's thesis, Northern Illinois University, Department of Mathematical Sciences, DeKalb, IL, 1993.

    Google Scholar 

  4. Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, Part I. In R.F. Sincovec et al., ed., Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, 1993.

  5. Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley. The spectral decomposition of nonsymmetric matrices on distributed memory parallel computers. SIAM J. Sci. Comput., 18: 1446-1461, 1997.

    Google Scholar 

  6. R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX + XB = C: Algorithm 432. Comm. ACM, 15: 820-826, 1972.

    Google Scholar 

  7. P. Benner and E. S. Quintana-Ortí. Solving stable generalized Lyapunov equations with the matrix sign function. Technical Report SPC 97_23, Fak. f. Mathematik, TU Chemnitz, 09107 Chemnitz, FRG, 1997.

    Google Scholar 

  8. P. Benner, E. S. Quintana-Ortí, and G. Quintana-Ortí. Rational iterative schemes for the numerical solution of linear matrix equations. In preparation.

  9. C. H. Bischof and G. Quintana. Computing rank-revealing QR factorizations of dense matrices. ACM Trans. Math. Software, to appear.

  10. L. S. Blackford et al. ScaLAPACK Users' Guide. SIAM, Philadelphia, 1997.

    Google Scholar 

  11. R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl., 85: 267-279, 1987.

    Google Scholar 

  12. R. Byers, C. He, and V. Mehrmann. The matrix sign function method and the computation of invariant subspaces. SIAM J. Matrix Anal. Appl., 18(3): 615-632, 1997.

    Google Scholar 

  13. T. Chan. Rank revealing QR factorizations. Linear Algebra Appl., 88/89: 67-82, 1987.

    Google Scholar 

  14. L. Dai. Singular Control Systems, vol. 118 of Lecture Notes in Control and Inform. Science. Springer, New York, 1989.

    Google Scholar 

  15. V. Dragan and A. Halanay. Stabilization of Linear Systems. Birkhäuser, Basel, Switzerland, 1994.

    Google Scholar 

  16. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam. PVM: Parallel Virtual Machine--A User's Guide and Tutorial for Network Parallel Computing. MIT Press, 1994.

  17. G. H. Golub and C. F. Van Loan. Matrix Computations, 2nd ed. Johns Hopkins University Press, Baltimore, 1989.

    Google Scholar 

  18. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press, 1994.

  19. C. He and V. Mehrmann. Stabilization of large linear systems. In L. Kulhavá, M. Kárný, and K. Warwick, ed., Preprints of the European IEEE Workshop CMP'94, Prague, September 1994, pp. 91-100, 1994.

  20. G. Henry and R. van de Geijn. Parallelizing the QR algorithm for the unsymmetric algebraic eigenvalue problem: myths and reality. SIAM J. Sci. Comput., to appear.

  21. G. Henry, D. Watkins, and J. J. Dongarra. A parallel implementation of the nonsymmetric QR algorithm for distributed memory architectures. Technical Report LAPACK Working Note 121, University of Tennessee at Knoxville, 1997.

    Google Scholar 

  22. V. Hernández and E. S. Quintana. Stabilizing Large Control Linear Systems on Multicomputers, vol. 1215 of Lecture Notes in Control and Information Science, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  23. H. Jarausch. Zur numerischen Untersuchung von parabolischen Differentialgleichungen mit Hilfe einer adaptiven spektralen Zerlegung. Habilitationsschrift, RWTH Aachen, Aachen (FRG), 1990.

    Google Scholar 

  24. C. Kenney and A. J. Laub. Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal. Appl., 12: 273-291, 1991.

    Google Scholar 

  25. C. Kenney and A. J. Laub. The matrix sign function. IEEE Trans. Automat. Control, 40(8): 1330-1348, 1995.

    Google Scholar 

  26. D. L. Kleinman. An easy way to stabilize a linear constant system. IEEE Trans. Automat. Control, AC-15: 692, 1970.

    Google Scholar 

  27. P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University Press, Oxford, UK, 1995.

    Google Scholar 

  28. V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, no. 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg, July 1991.

    Google Scholar 

  29. V. Mehrmann and H. Xu. An analysis of the pole placement problem. I. The single-input case. Electr. Trans. Num. Anal., 4: 89-105, 1996.

    Google Scholar 

  30. V. Mehrmann and H. Xu. Analysis of the pole placement problem II. The multi-input case. Electr. Trans. Num. Anal., 5: 77-97, 1997.

    Google Scholar 

  31. G. Miminis and C.C. Paige. An algorithm for pole assignment of time invariant linear systems. Internat. J. Control, 35: 341-354, 1982.

    Google Scholar 

  32. G. Quintana, X. Sun, and C.H. Bischof. A Blas-3 version of the QR factorization with column pivoting. SIAM J. Sci. Comput., 1998.

  33. J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat. J. Control, 32: 677-687, 1980.

    Google Scholar 

  34. V. Sima. An efficient Schur method to solve the stabilization problem. IEEE Trans. Automat. Control, AC-26: 724-725, 1981.

    Google Scholar 

  35. A. Varga. A Schur method for pole assignment. IEEE Trans. Automat. Control, AC-27: 517-519, 1981.

    Google Scholar 

  36. A. Varga. A multishift Hessenberg method for pole assignment of single-input systems. IEEE Trans. Automat. Control, AC-41(12), 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benner, P., Castillo, M., Quintana-Orti´, E.S. et al. Parallel Partial Stabilizing Algorithms for Large Linear Control Systems. The Journal of Supercomputing 15, 193–206 (2000). https://doi.org/10.1023/A:1008108004247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008108004247

Navigation