Published online by Cambridge University Press: 23 October 2018
We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known collapse result for the quantifier alternation of MSO logic over countable linear orderings. Second, we solve an open problem posed by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers using the reals in the background. Third, we establish the MSO-definability of the set of yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère, Carton, and Sénizergues.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.