Published online by Cambridge University Press: 23 October 2018
We consider Minkowski spacetime, the set of all point-events of spacetime under the relation of causal accessibility. That is, x can access y if an electromagnetic or (slower than light) mechanical signal could be sent from x to y. We use Prior’s tense language of F and P representing causal accessibility and its converse relation. We consider two versions, one where the accessibility relation is reflexive and one where it is irreflexive. In either case it has been an open problem, for decades, whether the logic is decidable or axiomatisable. We make a small step forward by proving, in each case, that the set of valid formulas over two-dimensional Minkowski spacetime is decidable and that the complexity of each problem is PSPACE-complete.
A consequence is that the temporal logic of intervals with real endpoints under either the containment relation or the strict containment relation is PSPACE-complete, the same is true if the interval accessibility relation is “each endpoint is not earlier”, or its irreflexive restriction.
We provide a temporal formula that distinguishes between three-dimensional and two-dimensional Minkowski spacetime and another temporal formula that distinguishes the two-dimensional case where the underlying field is the real numbers from the case where instead we use the rational numbers.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.