Published online by Cambridge University Press: 01 July 2007
We have studied the update operator ⊕1 defined for update sequences by Eiter et al. without tautologies and we have observed that it satisfies an interesting property. This property, which we call Weak Independence of Syntax (WIS), is similar to one of the postulates proposed by Alchourrón, Gärdenfors, and Makinson (AGM); only that in this case it applies to nonmonotonic logic. In addition, we consider other five additional basic properties about update programs and we show that ⊕1 satisfies them. This work continues the analysis of the AGM postulates with respect to the ⊕1 operator under a refined view that considers N2 as a monotonic logic which allows us to expand our understanding of answer sets. Moreover, N2 helped us to derive an alternative definition of ⊕1 avoiding the use of unnecessary extra atoms.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.