Published online by Cambridge University Press: 28 February 2012
The concurrency theory literature offers a wealth of examples of characteristic-formula constructions for various behavioural relations over finite labelled transition systems and Kripke structures that are defined in terms of fixed points of suitable functions. Such constructions and their proofs of correctness have been developed independently, but have a common underlying structure. This paper provides a general view of characteristic formulae that are expressed in terms of logics that have a facility for the recursive definition of formulae. We show how several examples of characteristic-formula constructions in the literature can be recovered as instances of the proposed general framework, and how the framework can be used to yield novel constructions. The paper also offers general results pertaining to the definition of co-characteristic formulae and of characteristic formulae expressed in terms of infinitary modal logics.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.