Published online by Cambridge University Press: 17 January 2003
We show that Friedman's proof of the existence of non-trivial βη-complete models of λ→ can be extended to system F. We isolate a set of conditions that are sufficient to ensure βη-completeness for a model of F (and α-completeness at the level of types), and we discuss which class of models we get. In particular, the model introduced in Barbanera and Berardi (1997), having as polymorphic maps exactly all possible Scott continuous maps, is βη-complete, and is hence the first known complete non-syntactic model of F. In order to have a suitable framework in which to express the conditions and develop the proof, we also introduce the very natural notion of ‘polymax models’ of System F.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.