Published online by Cambridge University Press: 07 November 2008
The essential part of abstract interpretation is to build a machine-representable abstract domain expressing interesting properties about the possible states reached by a program at runtime. Many techniques have been developed which assume that one knows in advance the class of properties that are of interest. There are cases however when there are no a priori indications about the 'best' abstract properties to use. We introduce a new framework that enables non-unique representations of abstract program properties to be used, and expose a method, called dynamic partitioning, that allows the dynamic determination of interesting abstract domains using data structures built over simpler domains. Finally, we show how dynamic partitioning can be used to compute non-trivial approximations of functions over infinite domains and give an application to the computation of minimal function graphs.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.
Discussions
No Discussions have been published for this article.