Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-12T18:12:25.387Z Has data issue: false hasContentIssue false

Kinetic and Dynamic Modeling of Single ActuatorWave-Like Robot

Published online by Cambridge University Press:  10 April 2019

Ruoyu Feng
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China. E-mails: fry18@mails.tsinghua.edu.cn, zhangpen18@mails.tsinghua.edu.cn, lijunf@mail.tsinghua.edu.cn
Peng Zhang
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China. E-mails: fry18@mails.tsinghua.edu.cn, zhangpen18@mails.tsinghua.edu.cn, lijunf@mail.tsinghua.edu.cn
Junfeng Li
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China. E-mails: fry18@mails.tsinghua.edu.cn, zhangpen18@mails.tsinghua.edu.cn, lijunf@mail.tsinghua.edu.cn
Hexi Baoyin*
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China. E-mails: fry18@mails.tsinghua.edu.cn, zhangpen18@mails.tsinghua.edu.cn, lijunf@mail.tsinghua.edu.cn
*
*Corresponding author. E-mail: baoyin@tsinghua.edu.cn

Summary

In this study, the kinematics and dynamics of a single actuator wave (SAW)-like robot are explored. Comprising a helical spine and links, SAW has the potential for miniaturization. A kinematic model for SAW is firstly established, and the dynamic equation of motion is derived based on Kane’s method. For validation, the motion of SAW is simulated using both MATLAB and ADAMS, and the comparison of results demonstrates the effectiveness of the theoretical models. Then the inverse dynamic analysis is performed to reveal the power consumption. Finally, robot prototypes are developed and tested to confirm the robot velocity predicted by simulations.

Type
Articles
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gray, J., “The mechanism of locomotion in snakes,J. Exp. Biol. 23(23), 101120 (1946).Google Scholar
Ma, S. G., “Analysis of Snake Movement Forms for Realization of Snake-like Robots,” Proceedings IEEE International Conference on Robotics and Automation, Detroit, Michigan, USA (1999) pp. 30073013.Google Scholar
Ariizumi, R., Tanaka, M. and Matsuno, F., “Analysis and heading control of continuum planar snake robot based on kinematics and a general solution thereof,Adv. Rob. 30(5), 301314 (2016).CrossRefGoogle Scholar
Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C. and Homans, S., “Modular reconfigurable robots in space applications,Autonom. Rob. 14(2–3), 225237 (2003).CrossRefGoogle Scholar
Chen, L., Ma, S. G., Wang, Y. C., Li, B. and Duan, D. P., “Design and modelling of a snake robot in traveling wave locomotion,Mech. Mach. Theory 42(12), 16321642 (2007).CrossRefGoogle Scholar
Kalani, H., Akbarzadeh, A. and Safehian, J., “Traveling wave locomotion of snake robot along symmetrical and unsymmetrical body shapes,Robotics 26(3), 17 (2011).Google Scholar
Rafsanjani, A., Zhang, Y. R., Liu, B. Y., Rubinstein, S. M. and Bertoldi, K., “Kirigami skins make a simple soft actuator crawl,Sci. Rob. 3(15), eaar7555 (2018).Google Scholar
Pei, Q. B., Rosenthal, M., Stanford, S., and Prahlad, H., “Multiple-degrees-of-freedom electroelastomer roll actuators,Smart Mater. Struct. 13(5), 8692 (2004).CrossRefGoogle Scholar
Yim, M., Duff, D. and Roufas, K., “PolyBot: A Modular Reconfigurable Robot,” Proceedings on IEEE International Conference on Robotics and Automation, San Francisco, California, USA (2002) pp. 514520.Google Scholar
Zarrouk, D., Mann, M., Degani, N., Yehuda, T., Jarbi, N. and Hess, A., “Single actuator wave-like robot (SAW): Design, modeling, and experiments,Bioinspiration Biomimetics 11(4), 046004 (2016).CrossRefGoogle Scholar
Gao, A. and Techet, A. H., “Design considerations for a robotic flying fish,” Oceans IEEE, Waikoloa, Hawaii, USA (2011) pp. 18.Google Scholar
Saito, M., Fukaya, M. and Iwasaki, T., “Serpentine locomotion with robotic snakes,Control Syst. IEEE 22(1), 6481 (2002).Google Scholar
Ma, S. G., Tadokoro, N., Inoue, K., and Li, B., “Influence of Inclining Angle of a Slope to Optimal Locomotion Curves of a Snake-like Robot,” IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China (2003) pp. 353358.Google Scholar
Liljeback, P., Pettersen, K. Y., Stavdahl, O. and Gravdahl, J. T., Snake Robots: Modeling, Mechatronics, and Control (Springer, Berlin, Germany, 2013).CrossRefGoogle Scholar
Rezapour, E., Pettersen, K. Y., Liljebäck, P. and Gravdahl, G. T., “Path following control of planar snake robots using virtual holonomic constraints: Theory and experiments,Rob. Biomimetics 1(1), 319 (2014).CrossRefGoogle Scholar
Prautsch, P. and Mita, T., “Control and Analysis of the Gait of Snake Robots,” Proceedings of the IEEE International Conference on Control Applications, Ohala Coast, Hawaii, USA (1999) pp. 502507.Google Scholar
Kane, T. R. and Levinson, D. A., “The use of Kane’s dynamical equations in robotics,Int. J. Rob. Res. 2(3), 320 (1983).CrossRefGoogle Scholar
Nukulwuthiopas, W., Maneewan, T. and Laowattana, S., “DynamicModeling of a One-wheel Robot by Using Kane’s Method,” IEEE International Conference on Industrial Technology, Bangkok, Thailand (2002) pp. 524529.Google Scholar
Yang, C., Huang, Q. and Han, J., “Decoupling control for spatial six-degree-of-freedom electro-hydraulic parallel robot,Rob. Comput. Integr. Manuf. 28(1), 1423 (2012).CrossRefGoogle Scholar
Keat, J. E., “Comment on ‘Relationship between Kane’s equations and the Gibbs-Appell equations’,J. Guidance Control Dyn. 10(6), 593597 (2015).Google Scholar
Kane, T. R. and Levinson, D. A., Dynamics: Theory and Applications, 1st ed., Series in Mechanical Engineering (McGraw-Hill, New York, 1985).Google Scholar
Meghdari, A., Karimi, R., Pishkenari, H. N., Gaskarimahalle, A. L. and Mahboobi, S. H., “An effective approach for dynamic analysis of rovers,Robotica 23(11), 771780 (2005).CrossRefGoogle Scholar
Nia, H. T., Pishkenari, H. N. and Meghdari, A., “A recursive approach for the analysis of snake robots using Kane’s equations,Robotica 24(2), 251256 (2006).CrossRefGoogle Scholar
Wei, H. X., Wang, T. M. and Liu, M., “Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by kane’s method,Robotica 31(3), 493501 (2013).CrossRefGoogle Scholar
Walton, M., Jayne, B. C. and Bennett, A. F., “The energetic cost of limbless locomotion,Science 249(4968), 524527 (1990).CrossRefGoogle Scholar
Zarrouk, D. and Fearing, R. S., “Controlled in-plane locomotion of a hexapod using a single actuator,IEEE Trans. Rob. 31(1), 157167 (2015).CrossRefGoogle Scholar
Birkmeyer, P., Peterson, K. and Fearing, R. S., “DASH: A Dynamic 16g Hexapedal Robot,” IEEE/RSJ International Conference on Intelligent Robots & Systems, IEEE, St. Louis, Missouri, USA (2009) pp. 26832689.Google Scholar
Kelasidi, E., Liljeback, P., Pettersen, K. Y. and Gravdahl, J. T., “Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns,Rob. Biomimetics 2(1), 8 (2015).CrossRefGoogle Scholar