Published online by Cambridge University Press: 15 April 2011
This paper presents closed-form analytic solutions for collision detection among multiagents traveling along specified paths. Previous solutions for centralized multiagent systems have mainly used iterative computational approaches for collision detection, which impose a heavy computational burden on the systems. In this paper, we formalize a new mathematical approach to overcoming the difficulty on the basis of simple continuous curvature (SCC) path modeling and a collision representation tool, extended collision map (ECM) method. The formulation permits all the potential collisions to be detected, represented, and parameterized with physical and geometric variables. The proposed parameterized collision region (PCR) method is a simple but precise, computationally efficient tool for describing complicated potential collisions with time traveled. Several simulations are presented to validate the proposed approach for use in centralized collision detectors and to compare the results with those of the iterative computational method and the proximity query package (PQP) method that are available.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.