Published online by Cambridge University Press: 12 March 2014
Let be a finite set of (nonlogical) predicate symbols. By an -structure, we mean a relational structure appropriate for . Let be the set of all -structures with universe {1, …, n}. For each first-order -sentence σ (with equality), let μ n (σ) be the fraction of members of for which σ is true. We show that μ n (σ) always converges to 0 or 1 as n → ∞, and that the rate of convergence is geometrically fast. In fact, if T is a certain complete, consistent set of first-order -sentences introduced by H. Gaifman [6], then we show that, for each first-order -sentence σ, μ n (σ) → n 1 iff T ⊩ ω. A surprising corollary is that each finite subset of T has a finite model. Following H. Scholz [8], we define the spectrum of a sentence σ to be the set of cardinalities of finite models of σ. Another corollary is that for each first-order -sentence a, either σ or ˜σ has a cofinite spectrum (in fact, either σ or ˜σ is “nearly always“ true).
Let be a subset of which contains for each in exactly one structure isomorphic to . For each first-order -sentence σ, let ν n (σ) be the fraction of members of which a is true. By making use of an asymptotic estimate [3] of the cardinality of and by our previously mentioned results, we show that v n(σ) converges as n → ∞, and that lim n ν n (σ) = lim n μ n (σ).If contains at least one predicate symbol which is not unary, then the rate of convergence is geometrically fast.
The author is grateful to Robert Vaught, William Craig, and Ralph McKenzie for useful suggestions which improved readability.
This paper is based on a part of the author's doctoral dissertation [2] in the Department of Mathematics at the University of California, Berkeley. Part of this work was carried out while the author was a National Science Foundation Graduate Fellow; also, part of this work was supported by NSF grant GP-24532.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.