Abstract
Due to their number of parameters, convolutional neural networks are known to take long training periods and extended inference time. Learning may take so much computational power that it requires a costly machine and, sometimes, weeks for training. In this context, there is a trend already in motion to replace convolutional pooling layers for a stride operation in the previous layer to save time. In this work, we evaluate the speedup of such an approach and how it trades off with accuracy loss in multiple computer vision domains, deep neural architectures, and datasets. The results showed significant acceleration with an almost negligible loss in accuracy, when any, which is a further indication that convolutional pooling on deep learning performs redundant calculations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
http://rrc.cvc.uab.es/
We used the Python OPF implementation available at https://github.com/marcoscleison/PyOPF.
References
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G.S, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Accessed 5 May 2020.
Arganda-Carreras I, Turaga SC, Berger DR, Cireşan D, Giusti A, Gambardella LM, Schmidhuber J, Laptev D, Dwivedi S, Buhmann JM, et al. Crowdsourcing the creation of image segmentation algorithms for connectomics. Front Neuroanat. 2015;9:142.
Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V. An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 2010;8(10):e1000502.
Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. CoRR abs/1512.01274 (2015). http://arxiv.org/abs/1512.01274
Chollet F, et al. Keras. (2015). https://keras.io. Accessed 5 May 2020.
Cover TM, Hart PE, et al. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.
DeVries T, Taylor G.W. Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)
Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html. Accessed 5 May 2020.
Ghiasi G, Lin TY, Le QV. Dropblock: a regularization method for convolutional networks. Advances in neural information processing systems. Cambridge: MIT Press; 2018. p. 10727–37.
Han J, Bhanu B. Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell. 2006;28(2):316–22.
Harada T, Kuniyoshi Y. Graphical gaussian vector for image categorization. Advances in neural information processing systems. Cambridge: MIT Press; 2012. p. 1547–55.
Hubel D, Wiesel T. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.
Hubel DH, Wiesel TN. Receptive fields of single neurons in the cat’s striate cortex. J Physiol. 1959;148:574–91.
Hubel DH, Wiesel TN. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol. 1965;28(2):229–89.
Iwama H, Okumura M, Makihara Y, Yagi Y. The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans Inf Forensics Secur. 2012;7(5):1511–21.
Jaderberg M, Simonyan K, Vedaldi A, Zisserman A. Reading text in the wild with convolutional neural networks. arXiv preprint arXiv:1412.1842 (2014)
Jaderberg M, Simonyan K, Vedaldi A, Zisserman A. Synthetic data and artificial neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227 (2014)
Jaderberg M, Simonyan K, Vedaldi A, Zisserman A. Reading text in the wild with convolutional neural networks. Int J Comput Vis. 2016;116(1):1–20.
Karatzas D, Gomez-Bigorda L, Nicolaou A, Ghosh S, Bagdanov A, Iwamura M, Matas J, Neumann L, Chandrasekhar V.R, Lu S. et al.: Icdar 2015 competition on robust reading. In: 2015 13th International conference on document analysis and recognition (ICDAR), IEEE, pp. 1156–1160 (2015)
Krizhevsky A, Nair V, Hinton G. Cifar-10 (canadian institute for advanced research) 2009. http://www.cs.toronto.edu/~kriz/cifar.html. Accessed 5 May 2020.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems. Cambridge: MIT Press; 2012. p. 1097–105.
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.
LeCun Y, Cortes C. MNIST handwritten digit database. 2010. http://yann.lecun.com/exdb/mnist/. Accessed 5 May 2020.
Lin M, Chen Q, Yan S. Network in network. CoRR abs/1312.4400 (2013). http://arxiv.org/abs/1312.4400
Lin T, Maire M, Belongie S.J, Bourdev L.D, Girshick R.B, Hays J, Perona P, Ramanan D, Dollár P, Zitnick C.L. Microsoft COCO: common objects in context. CoRR abs/1405.0312 (2014). http://arxiv.org/abs/1405.0312
Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.
Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D. Human-level control through deep reinforcement learning. Nature. 2015;518(7540):529–33.
Nagi J, Ducatelle F, Di Caro G.A, Cireşan D, Meier U, Giusti A, Nagi F, Schmidhuber J, Gambardella L.M. Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: Signal and Image Processing Applications (ICSIPA), 2011 IEEE International Conference on, pp. 342–347. IEEE (2011)
Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng A.Y. Reading digits in natural images with unsupervised feature learning (2011)
Papa JP, Falcão AX, Suzuki CTN. Supervised pattern classification based on optimum-path forest. Int J Imaging Syst Technol. 2009;19(2):120–31. https://doi.org/10.1002/ima.v19:2.
Papa JP, Falcão AX, Albuquerque VHC, Tavares JMRS. Efficient supervised optimum-path forest classification for large datasets. Pattern Recogn. 2012;45(1):512–20.
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. Pytorch: an imperative style, high-performance deep learning library. Advances in neural Iinformation processing systems, vol. 32. New York: Curran Associates Inc; 2019. p. 8024–35.
Redmon J, Divvala S.K, Girshick R.B, Farhadi A. You only look once: Unified, real-time object detection. CoRR abs/1506.02640 (2015). http://arxiv.org/abs/1506.02640
Redmon J, Farhadi A. YOLO9000: better, faster, stronger. CoRR abs/1612.08242 (2016). http://arxiv.org/abs/1612.08242
Romera E, Alvarez J.M, Bergasa L.M, Arroyo R. Efficient convnet for real-time semantic segmentation. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1789–1794 (2017)
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015)
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52. https://doi.org/10.1007/s11263-015-0816-y.
Sánchez J, Perronnin F, Mensink T, Verbeek J. Image classification with the fisher vector: theory and practice. Int J Comput Vis. 2013;105(3):222–45.
do Santos CFG, Colombo D, Roder M, Papa JP. Maxdropout: Deep neural network regularization based on maximum output values (2020). arXiv:2007.13723.
Santos CFG, Moreira TP, Colombo D, Papa JP. Does pooling really matter? an evaluation on gait recognition. In: Nyström A, Heredia YH, Núñez VM, editors. Progress in pattern recognition, image analysis, computer vision, and applications. Cham: Springer; 2019. p. 751–60.
dos Santos CFG, Moreira TP, Colombo D, Papa JP. Does pooling really matter? an evaluation on gait recognition. Iberoamerican congress on pattern recognition. Berlin: Springer; 2019. p. 751–60.
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)
Shahab A, Shafait F, Dengel A. Icdar 2011 robust reading competition challenge 2: Reading text in scene images. In: 2011 International conference on document analysis and recognition, IEEE, pp. 1491–1496 (2011)
Shiraga K, Makihara Y, Muramatsu D, Echigo T, Yagi Y. Geinet: View-invariant gait recognition using a convolutional neural network. In: 2016 International conference on biometrics (ICB), IEEE, pp. 1–8 (2016)
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Torralba A, Fergus R, Freeman WT. 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans Pattern Anal Mach Intell. 2008;30(11):1958–70. https://doi.org/10.1109/TPAMI.2008.128.
Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bull. 1945;1(6):80–3.
Zeiler M.D, Fergus R. Visualizing and understanding convolutional networks. In: European conference on computer vision, Springer, pp. 818–833 (2014)
Zhang Y, Gueguen L, Zharkov I, Zhang P, Seifert K, Kadlec B. Uber-text: A large-scale dataset for optical character recognition from street-level imagery. In: SUNw: Scene Understanding Workshop—CVPR 2017. Hawaii, USA (2017)
Zhong Z, Zheng L, Kang G, Li S, Yang Y. Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2020)
Acknowledgements
The authors are grateful to Petrobras grant #2017/00285-6, FAPESP grants #2013/07375-0, #2014/12236-1, #2017/25908-6, #2018/15597-6, #2019/07665-4, as well as CNPq grants #307066/2017-7 and #427968/2018-6. On behalf of all authors, the corresponding author states that there is no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Santos, C.F.G.d., Moreira, T.P., Colombo, D. et al. Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?. SN COMPUT. SCI. 1, 275 (2020). https://doi.org/10.1007/s42979-020-00295-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42979-020-00295-9