SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop | Journal of Hydrodynamics
Skip to main content

SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop

  • Special Column on SPHERIC2017 (Guest Editors Mou-bin Liu, Can Huang, A-man Zhang)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper shows the results of the smooth particle hydrodynamics (SPH) modelling of the hydraulic jump at an abrupt drop, where the transition from supercritical to subcritical flow is characterised by several flow patterns depending upon the inflow and tailwater conditions. SPH simulations are obtained by a pseudo-compressible XSPH scheme with pressure smoothing; turbulent stresses are represented either by an algebraic mixing-length model, or by a two-equation k-ε model. The numerical model is applied to analyse the occurrence of oscillatory flow conditions between two different jump types characterised by quasi-periodic oscillation, and the results are compared with experiments performed at the hydraulics laboratory of Bari Technical University. The purpose of this paper is to obtain a deeper understanding of the physical features of a flow which is in general difficult to be reproduced numerically, owing to its unstable character: in particular, vorticity and turbulent kinetic energy fields, velocity, water depth and pressure spectra downstream of the jump, and velocity and pressure cross-correlations can be computed and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pagliara S. Transition from supercritical to subcritical flow at an abrupt drop [J]. Journal of Hydraulic Research, 1992, 30(3): 428–432.

    Article  Google Scholar 

  2. Nebbia G. Su taluni fenomeni alternativi in correnti libere [J] L’Energia Elettrica, 1942, XIX(1): 1–10.

    MathSciNet  Google Scholar 

  3. Abdel Ghafar A., Mossa M., Petrillo A. Scour from flow downstream of a sluice gate after a horizontal apron [C]. 6th International Symposium on River Sedimentation-Management of Sediment-Philosophy, Aims, and Techniques, New Delhi, India, 1995, 1069–1088.

    Google Scholar 

  4. Mossa M. On the oscillating characteristics of hydraulic jumps [J]. Journal of Hydraulic Research, 1999, 37(4): 541–558.

    Article  Google Scholar 

  5. Wang H., Chanson H. Experimental study of turbulent fluctuations in hydraulic jumps [J]. Journal of Hydraulic Engineering, ASCE, 2015, 141(7): 04015010.

    Article  Google Scholar 

  6. Mossa M., Petrillo A., Chanson H. Tailwater level effects on flow conditions at an abrupt drop [J]. Journal of Hydraulic Research, 2003, 41(1): 39–51.

    Article  Google Scholar 

  7. Dalrymple R. A., Rogers B. D. Numerical modelling of waves with the SPH method [J]. Coastal Engineering, 2006, 53(2-3): 131–147.

    Article  Google Scholar 

  8. Capone T., Panizzo A., Monaghan J. J. SPH modelling of water waves generated by submarine landslides [J]. Journal of Hydraulic Research, 2010, 48(Suppl. 1): 80–84.

    Article  Google Scholar 

  9. De Padova D., Dalrymple R. A., Mossa M. Analysis of the artificial viscosity in the smoothed particle hydrodynamics modelling of regular waves [J]. Journal of Hydraulic Research, 2014, 52(6): 836–848.

    Article  Google Scholar 

  10. Espa P., Sibilla S., Gallati M. SPH simulations of a vertical 2-D liquid jet introduced from the bottom of a free-surface rectangular tank [J]. Advances Application Fluid Mechanics, 2008, 3(2): 105–140.

    MATH  Google Scholar 

  11. De Padova D., Mossa M., Sibilla S. et al. 3D SPH modelling of hydraulic jump in a very large channel [J]. Journal of Hydraulic Research, 2013, 51(2): 158–173.

    Article  Google Scholar 

  12. Jonsson P., Andreassona P., Hellström J. G. I. et al. Smoothed particle hydrodynamic simulation of hydraulic jump using periodic open boundaries [J]. Applied Mathatical Modelling, 2016, 40(19-20): 8391–8405.

    Article  MathSciNet  Google Scholar 

  13. De Padova D., Mossa M., Sibilla S. SPH modelling of hydraulic jump oscillations at an abrupt drop [J]. Water, 2017, 90: 790–814.

    Article  Google Scholar 

  14. De Padova D., Mossa M., Sibilla S. SPH numerical investigation of characteristics of hydraulic jumps [J]. Environmental Fluid Mechahics, 2017, https://doi.org/10.1007/s10652-017-9566-4.

    Google Scholar 

  15. De Padova D., Mossa M., Sibilla S. SPH numerical investigation of the velocity field and vorticity generation within a hydrofoil-induced spilling breaker [J]. Environmental Fluid Mechanics, 2016, 16(1): 267–287.

    Article  Google Scholar 

  16. Mossa M., Tolve U. Flow visualization in bubbly twophase hydraulic jump [J]. Journal of Fluids Engineering, 1998, 120(1): 160–165.

    Article  Google Scholar 

  17. Mossa M. Discussion on “Relation of surface roller eddy formation and surface fluctuation in hydraulic jumps” by K. M. Mok [J]. Journal of Hydraulic Research, 2005, 43(5): 588–592.

    Article  Google Scholar 

  18. Mossa M., Petrillo A., Chanson H. Discussion on the “Tailwater level effects on flow conditions at an abrupt drop” [J]. Journal of Hydraulic Research, 2004, 43(2): 217–224.

    Article  Google Scholar 

  19. Mossa M. Experimental study of the flow field with spilling type breaking [J]. Journal of Hydraulic Research, 2008, 46(Suppl. 1): 81–86.

    Article  Google Scholar 

  20. Liu G. R., Liu M. B. Smoothed particle hydrodynamics: A meshfree particle methods [M]. Singapore: World Scientific, 2005.

    Google Scholar 

  21. Monaghan J. J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1992, 110(2): 399–406.

    Article  MATH  Google Scholar 

  22. Sibilla S. An algorithm to improve consistency in smoothed particle hydrodynamics [J]. Computers and Fluids, 2015, 118: 148–158.

    Article  MathSciNet  Google Scholar 

  23. De Padova D., Mossa M., Sibilla S. Laboratory experiments and SPH modelling of hydraulic jumps [C]. Proceedings of the 4th SPHERIC Workshop, Nantes, France, 2009, 255–257.

    Google Scholar 

  24. De Padova D., Mossa M., Sibilla S. et al. Hydraulic jump simulation by SPH [C]. Proceedings of the 5th SPHERIC Workshop, Manchester, UK, 2010, 50–55.

    Google Scholar 

  25. Launder B. E., Spalding D. B. The numerical computation of turbulent flows [J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269–289.

    Article  MATH  Google Scholar 

  26. Dehnen W., Aly H. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability [J]. Monthly Notices of the Royal Astronomical Society, 2012, 425(2): 1068–1082.

    Article  Google Scholar 

  27. De Padova D., Dalrymple R. A., Mossa M. et al. An analysis of SPH smoothing function modelling a regular breaking wave [C]. Proceedings of the National Conference XXXI Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Perugia, Italy, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana De Padova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Padova, D., Mossa, M. & Sibilla, S. SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop. J Hydrodyn 30, 106–113 (2018). https://doi.org/10.1007/s42241-018-0011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-018-0011-z

Keywords