Abstract
The well-known influence maximization (IM) problem has been actively studied by researchers over the past decade with emphasis on marketing and social networks. Existing research has determined solutions to the IM problem by obtaining the influence spread and utilizing the property of submodularity. This paper is based on a novel approach to the IM problem geared toward optimizing clicks, and consequently revenue, within an online social network (OSN). Our approach differs from existing approaches by adopting a novel, decision-making perspective using stochastic dynamic programming (SDP). Thus, we define a new problem, influence maximization–revenue optimization and propose SDP as a solution method. The SDP method has lucrative gains for an advertiser in terms of optimizing clicks and generating revenue, but one drawback to the method is its associated “curse of dimensionality” particularly for large OSNs. Thus, we introduce the L-degree heuristic, adaptive hill-climbing heuristic and the multistage particle swarm optimization heuristic as methods which are orders of magnitude faster than the SDP method while achieving near-optimal results. We compare these heuristics on both synthetic and real-world networks.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abbassi, Z., Bhaskara, A., Misra, V.: Optimizing display advertising in online social networks. In: Proceedings of the 24th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, WWW ’15, pp. 1–11, (2015). https://doi.org/10.1145/2736277.2741648
Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, NJ (1957)
Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16(3), 580–595 (1991). https://doi.org/10.1287/moor.16.3.580
Bhagat, S., Goyal, A., Lakshmanan, LV.: Maximizing product adoption in social networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, ACM, New York, NY, USA, WSDM ’12, pp. 603–612, (2012). https://doi.org/10.1145/2124295.2124368
Cao, T., Wu, X., Hu, T.X., Wang, S.: Active learning of model parameters for influence maximization. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) Machine Learning and Knowledge Discovery in Databases, pp. 280–295. Springer, Berlin (2011)
Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, ACM, New York, NY, USA, SIGMOD ’98, pp. 307–318, (1998).https://doi.org/10.1145/276304.276332
Chang, B., Xu, T., Liu, Q., Chen, E.H.: Study on information diffusion analysis in social networks and its applications. Int. J. Autom. Comput. 15, 1–26 (2018)
Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’09, pp. 199–208, (2009). https://doi.org/10.1145/1557019.1557047
Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’10, pp 1029–1038, (2010). https://doi.org/10.1145/1835804.1835934
Chen, W., Collins, A., Cummings, R., Ke, T., Liu, Z., Rincon, D., Sun, X., Wei, W., Wang, Y., Yuan, Y.: Influence maximization in social networks when negative opinions may emerge and propagate. In: Proceedings of the 2011 SIAM International Conference on Data Mining (SDM’2011) (2011)
Clerc, M.: Discrete Particle Swarm Optimization, Illustrated by the Traveling Salesman Problem, pp. 219–239. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-39930-8_8
Davis, L.: Bit-climbing, representational bias, and test suit design. Proc. Int. Conf. Genetic Algorithm 1991, 18–23 (1991)
Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’01, pp 57–66, (2001). https://doi.org/10.1145/502512.502525
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Symposium on Micro Machine and Human Science. Japan, Nagoya, Piscataway, NJ, pp. 39–43 (1995). https://doi.org/10.1109/MHS.1995.494215
Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco, Amsterdam (2001)
Facebook (2016) Facebook reports fourth quarter and full year 2016 results. https://investor.fb.com/investor-news/press-release-details/2017/facebook-Reports-Full-Year-2016 (2016). Accessed 3 Jan 2017
Galhotra, S., Arora, A., Roy, S.: Holistic influence maximization: Combining scalability and efficiency with opinion-aware models. In: Proceedings of the 2016 International Conference on Management of Data, ACM, New York, NY, USA, SIGMOD ’16, pp. 743–758, (2016). https://doi.org/10.1145/2882903.2882929
Galstyan, A., Musoyan, V.L., Cohen, P.R.: Maximizing influence propagation in networks with community structure. Phys. Rev. E Stat Nonlinearv Soft Matter Phys. 79(5 Pt 2), 056–102 (2009)
Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mac.h Intell. 6(6), 721–741 (1984). https://doi.org/10.1109/TPAMI.1984.4767596
Gomez Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’10, pp. 1019–1028, (2010). https://doi.org/10.1145/1835804.1835933
Goyal, A., Bonchi, F., Lakshmanan, LV.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, ACM, New York, NY, USA, WSDM ’10, pp. 241–250, (2010). https://doi.org/10.1145/1718487.1718518
Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978). https://doi.org/10.1086/226707
Han, K., Xu, C., Gui, F., Tang, S., Huang, H., Luo, J.: Discount allocation for revenue maximization in online social networks. In: Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, ACM, New York, NY, USA, Mobihoc ’18, pp. 121–130, (2018). https://doi.org/10.1145/3209582.3209595
He, X., Kempe, D.: Stability of influence maximization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’14, pp. 1256–1265, (2014). https://doi.org/10.1145/2623330.2623746
Hosein, P., Lawrence, T.: Stochastic dynamic programming model for revenue optimization in social networks. 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) pp. 378–383 (2015)
Hosseini-Pozveh, M., Zamanifar, K., Naghsh-Nilchi, A.R., Dolog, P.: Maximizing the spread of positive influence in signed social networks. Intell. Data Anal. 20(1), 199–218 (2016)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’03, pp. 137–146, (2003). https://doi.org/10.1145/956750.956769
Kennedy, J., Eberhart, RC.: A discrete binary version of the particle swarm algorithm. In: Proceedings of Conference on System, Man and Cybernetics (1997)
Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking links in a network. In: Proceedings of the 23rd National Conference on Artificial Intelligence , Vol. 2, AAAI Press, AAAI’08, pp 1175–1180, (2008). http://dl.acm.org/citation.cfm?id=1620163.1620255
Kimura, M., Saito, K., Ohara, K., Motoda, H.: Speeding-up node influence computation for huge social networks. Int. J. Data Sci. Anal. 1(1), 3–16 (2016). https://doi.org/10.1007/s41060-015-0001-y
Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a social communication network. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’08, pp. 435–443, (2008). https://doi.org/10.1145/1401890.1401945
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data (2014). Accessed 29 Feb 2017
Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’07, pp. 420–429, (2007). https://doi.org/10.1145/1281192.1281239
Liu, B., Cong, G., Xu, D., Zeng, Y.: Time constrained influence maximization in social networks. In: 2012 IEEE 12th International Conference on Data Mining (ICDM), IEEE, pp. 439–448 (2012)
Loukides, G., Gwadera, R.: Preventing the diffusion of information to vulnerable users while preserving pagerank. Int. J. Data Sci. Anal. 5(1), 19–39 (2018). https://doi.org/10.1007/s41060-017-0082-x
Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model Comput. Simul. 8(1), 3–30 (1998). https://doi.org/10.1145/272991.272995
Meerman, S.: Viral marketing: Let the world tell your story for free. https://www.pragmaticmarketing.com/resources/articles/Viral-Marketing-Let-The-World-Tell-Your-Story (2008). Accessed 10 Oct 2017
Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65 (2015)
Nascimento, J., Powell, W.B.: An optimal approximate dynamic programming algorithm for concave, scalar storage problems with vector-valued controls. IEEE Trans. Autom. Control 58(12), 2995–3010 (2013)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions–I. Math. Progr. 14(1), 265–294 (1978). https://doi.org/10.1007/BF01588971
Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of dimensionality, vol. 703. Wiley, London (2007)
Pramanik, S., Sharma, M., Danisch, M., Wang, Q., Guillaume, JL., Bivas, M.: Easy-mention: a model-driven mention recommendation heuristic to boost your tweet popularity. Int. J. Data Sci. Anal. 5:1–17, (2018). https://doi.org/10.1007/s41060-018-0121-2
Rahaman, I., Hosein, P.: On the Problem of Multi-Staged Impression Allocation in Online Social Networks, pp. 65–84. Springer, Cham (2018)
Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’02, pp. 61–70, (2002).https://doi.org/10.1145/775047.775057
Rossetti, G., Milli, L., Salvatore, R., Sîrbu, A., Pedreschi, D., Giannotti, F.: Ndlib: a python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Anal. 5(1), 61–79 (2018). https://doi.org/10.1007/s41060-017-0082-x
Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities for independent cascade model. In: Proceedings of the 12th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, Part III, Springer-Verlag, Berlin, Heidelberg, KES ’08, pp. 67–75, (2008). https://doi.org/10.1007/978-3-540-85567-5_9
Salman, A., Ahmad, I., Al-Madani, S.: Particle swarm optimization for task assignment problem. Microprocess. Microsyst. 26(8), 363–371 (2002)
Sha, D., Hsu, C.Y.: A hybrid particle swarm optimization for job shop scheduling problem. Comput. Ind. Eng. 51(4), 791–808 (2006)
Singer, Y.: How to win friends and influence people, truthfully: influence maximization mechanisms for social networks. In: Proceedings of the fifth ACM international conference on Web search and data mining, ACM, pp. 733–742 (2012)
Song, Y., Dinh, T.: Optimal containment of misinformation in social media: A scenario-based approach. In: Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science, Springer, pp. 547–556 (2014)
Sun, H., Cheng, R., Xiao, X., Yan, J., Zheng, Y., Qian, Y.: Maximizing social influence for the awareness threshold model. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) Database Systems for Advanced Applications, pp. 491–510. Springer, Cham (2018)
Tsang, E., Voudouris, C.: Fast local search and guided local search and their application to british telecom’s workforce scheduling problem. Oper. Res. Lett. 20(3), 119–127 (1997). https://doi.org/10.1016/S0167-6377(96)00042-9
Wang, K.P., Huang, L., Zhou, C.G., Pang, W.: Particle swarm optimization for traveling salesman problem. In: International Conference Machine Learning Cybernetics, IEEE, vol. 3, pp. 1583–1585 (2003)
Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’10, pp. 1039–1048, (2010). https://doi.org/10.1145/1835804.1835935
Wen, Y.T., Peng, W.C., Shuai, H.H.: Maximizing social influence on target users. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 701–712. Springer, Cham (2018)
Wu, H.H., Küçükyavuz, S.: A two-stage stochastic programming approach for influence maximization in social networks. Comput. Optim. Appl. 69(3), 563–595 (2018). https://doi.org/10.1007/s10589-017-9958-x
Yang, J., Liu, J.: Influence maximization-cost minimization in social networks based on a multiobjective discrete particle swarm optimization algorithm. IEEE Access 6, 2320–2329 (2018)
Zafarani, R., Liu, H.: Social computing data repository at ASU. (2009). http://socialcomputing.asu.edu. Accessed 29 Feb 2017
Zhang, Y., Zhang, P., Bao, Z., Xie, Z., Liu, Q., Zhang, B.: Finding influential nodes by a fast marginal ranking method. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds.) Databases Theory and Applications, pp. 249–261. Springer, Cham (2018)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Lawrence, T., Hosein, P. Stochastic dynamic programming heuristics for influence maximization–revenue optimization. Int J Data Sci Anal 8, 1–14 (2019). https://doi.org/10.1007/s41060-018-0155-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41060-018-0155-5