Dynamical Analysis of T–S Fuzzy Financial Systems: A Sampled-Data Control Approach | International Journal of Fuzzy Systems Skip to main content

Advertisement

Log in

Dynamical Analysis of T–S Fuzzy Financial Systems: A Sampled-Data Control Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the sampled-data stabilization of the Takagi–Sugano (T–S) fuzzy system, focusing on the existence of extreme event (EE) and its application to the financial model. The mathematical model of finance system is constructed through real time hardware experiment for the first time. The EE is identified in certain ranges of system parameters, is characterized and confirmed through numerical, analytical and experimental investigations. The stability analysis confirms that the EE occurs via an interior crisis phenomenon. The dynamical system is identified through bifurcation analysis and its corresponding Lyapunov exponent. The second phase of the manuscript is that, by building an appropriate Lyapunov function, sufficient conditions are derived to guarantee that the addressed T–S fuzzy financial system is asymptotically stable. The proposed stability conditions are expressed in terms of linear matrix inequalities (LMIs). In addition, the sampled-data control techniques are used to stabilize the EE. Finally, the simulation result is presented to support the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jun Hai, M., Yu Shu, C.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Appl. Math. Mech. 22(11), 1240–1251 (2001)

    Article  MathSciNet  Google Scholar 

  2. Ching Chen, W.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solit. Fractals. 36(5), 1305–1314 (2008)

    Article  Google Scholar 

  3. Chr Framstad, N., Øksendal, B., Sulem, A.: Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs. J. Math. Econ. 35(2), 233–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Finance, Boca Raton (2004)

    MATH  Google Scholar 

  5. Pan, I., Das, S., Das, S.: Multi-objective active control policy design for commensurate and incommensurate fractional order chaotic financial systems. Appl. Math. Model. 39(2), 500–514 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kai, G., Zhang, W., Jin, Z., Wang, C.Z.: Hopf bifurcation and dynamic analysis of an improved financial system with two delays. Complexity 2020, 3734125 (2020)

    Article  Google Scholar 

  7. Ma, C., Wang, X.: Hopf bifurcation and topological horseshoe of a novel finance chaotic system. Commun. Nonlinear Sci. Numer. Simul. 17(2), 721–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hassard, B.D., Hassard, B.D., Kazarinoff, N.D., Wan, Y.H., Wan, Y.W.: Theory and Applications of Hopf Bifurcation, vol. 41. CUP Archive, Cambridge (1981)

    MATH  Google Scholar 

  9. Wei, Z., Yousefpour, A., Jahanshahi, H., Kocamaz, U.E., Moroz, I.: Hopf bifurcation and synchronization of a five-dimensional self-exciting homopolar disc dynamo using a new fuzzy disturbance-observer-based terminal sliding mode control. J. Frankl. Inst. 358(1), 814–833 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brandimarte, P.: Numerical Methods in Finance and Economics: A MATLAB-Based Introduction. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  11. Gunasekaran, N., Joo, Y.H.: Nie-Tan fuzzy method of fault-tolerant wind energy conversion systems via sampled-data control. IET Control Theory Appl. 14(11), 1516–1523 (2020)

    Article  MathSciNet  Google Scholar 

  12. Cai, X., Wang, J., Zhong, S., Shi, K., Tang, Y.: Fuzzy quantized sampled-data control for extended dissipative analysis of T–S fuzzy system and its application to WPGSs. J. Frankl. Inst. 358(2), 1350–1375 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gunasekaran, N., Zhai, G., Qiang, Yu.: Exponential sampled-data fuzzy stabilization of nonlinear systems and its application to basic buck converters. IET Control Theory Appl. 15(9), 1157–1168 (2021)

    Article  Google Scholar 

  14. Shi, K., Wang, J., Zhong, S., Tang, Y., Cheng, J.: Non-fragile memory filtering of T–S fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst. 394, 40–64 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gunasekaran, N., Joo, H.Y.: Robust sampled-data fuzzy control for nonlinear systems and its applications: Free-weight matrix method. IEEE Trans. Fuzzy Syst. 27(11), 2130–2139 (2019)

    Article  Google Scholar 

  16. Vadivel, R., Suresh, R., Hammachukiattikul, P., Unyong, B., Gunasekaran, N.: Event-triggered \(L_2-L_\infty\) filtering for network-based neutral systems with time-varying delays via T–S fuzzy approach. IEEE Access 49, 1649 (2021)

    Google Scholar 

  17. Keung Lam, H.: LMI-based stability analysis for fuzzy-model-based control systems using artificial T–S fuzzy model. IEEE Trans. Fuzzy Syst. 19(3), 505–513 (2011)

    Article  Google Scholar 

  18. Shi, K., Tang, Y., Liu, X., Zhong, S.: Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation. ISA Trans. 66, 185–199 (2017)

    Article  Google Scholar 

  19. Ali, M.S., Gunasekaran, N., Aruna, B.: Design of sampled-data control for multiple-time delayed generalised neural networks based on delay-partitioning approach. Int. J. Syst. Sci. 48(13), 2794–2810 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi, K., Liu, X., Zhu, H., Zhong, S.: On designing stochastic sampled-data controller for master-slave synchronization of chaotic Lur’e system via a novel integral inequality. Commun. Nonlinear Sci. Numer. Simul. 34, 165–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ali, M.S., Gunasekaran, N., Zhu, Q.: State estimation of T–S fuzzy delayed neural networks with Markovian jumping parameters using sampled-data control. Fuzzy Sets Syst. 306, 87–104 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yucel, E., Ali, M.S., Gunasekaran, N., Arik, S.: Sampled-data filtering of Takagi–Sugeno fuzzy neural networks with interval time-varying delays. Fuzzy Sets Syst. 316, 69–81 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gunasekaran, N., Joo, Y.H.: Stochastic sampled-data controller for T–S fuzzy chaotic systems and its applications. IET Control Theory Appl. 13(12), 1834–1843 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhai, G., Xuping, X.: A commutation condition for stability analysis of switched linear descriptor systems. Nonlinear Anal. Hybrid Syst. 5(3), 383–393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chang, Y., Zhai, G., Bo, F., Xiong, L.: Quadratic stabilization of switched uncertain linear systems: A convex combination approach. IEEE/CAA J. Automatica Sinica 6(5), 1116–1126 (2019)

    Article  MathSciNet  Google Scholar 

  26. Ali, M.S., Meenakshi, K., Gunasekaran, N., Usha, M.: Finite-time passivity of discrete-time T–S fuzzy neural networks with time-varying delays. Iran. J. Fuzzy Syst. 15(4), 93–107 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Gourieroux, C., Jasiak, J.: Financial Econometrics: Problems, Models, and Methods, vol. 2. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  28. Cantore, C., Levine, P.: Getting normalization right: Dealing with ‘dimensional constants’ in macroeconomics. J. Econ. Dyn. Control 36(12), 1931–1949 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Volos, C.K., Kyprianidis, I.M., Stavrinides, S.G., Stouboulos, I.N., Magafas, I., Anagnostopoulos, A.N.: Nonlinear financial dynamics from an engineer’s point of view. J. Eng. Sci. Technol. Rev. 4(3), 281–285 (2011)

    Article  Google Scholar 

  30. Howison, S.D., Kelly, F.P., Wilmott, P.: Mathematical Models in Finance, vol. 11. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  31. Baggaley, R.F., Ferguson, N.M., Garnett, G.P.: The epidemiological impact of antiretroviral use predicted by mathematical models: A review. Emerg. Themes Epidemiol. 2(1), 1–18 (2005)

    Article  Google Scholar 

  32. Rhodes, T., Lancaster, K.: Mathematical models as public troubles in COVID-19 infection control: Following the numbers. Health Sociol. Rev. 29(2), 177–194 (2020)

    Article  Google Scholar 

  33. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  34. Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mendel, J. M.: Uncertain rule-based fuzzy systems. Introduction and New Directions. Springer, Cham p. 684 (2017)

  36. Faria, F.A., Silva, G.N., Oliveira, V.A.: Reducing the conservatism of LMI-based stabilisation conditions for T–S fuzzy systems using fuzzy Lyapunov functions. Int. J. Syst. Sci. 44(10), 1956–1969 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Khan, A., Kumar, S.: T–S fuzzy modeling and predictive control and synchronization of chaotic satellite systems. Int. J. Model. Simul. 39(3), 203–213 (2019)

    Article  Google Scholar 

  38. Li Calzi, M.: Towards a general setting for the fuzzy mathematics of finance. Fuzzy Sets Syst. 35(3), 265–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ding, S., Wang, Z., Rong, N., Zhang, H.: Exponential stabilization of memristive neural networks via saturating sampled-data control. IEEE Trans. Cybern. 47(10), 3027–3039 (2017)

    Article  Google Scholar 

  40. Derakhshan, S.F., Fatehi, A., Sharabiany, M.G.: Nonmonotonic observer-based fuzzy controller designs for discrete time T–S fuzzy systems via LMI. IEEE Trans. Cybern. 44(12), 2557–2567 (2014)

    Article  Google Scholar 

  41. Zhu, Z.Y., Zhao, Z.S., Zhang, J., Wang, R.K., Li, Z.: Adaptive fuzzy control design for synchronization of chaotic time-delay system. Inf. Sci. 535, 225–241 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sheng, L., Ma, X.: Stability analysis and controller design of interval type-2 fuzzy systems with time delay. Int. J. Syst. Sci. 45(5), 977–993 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Van den Berg, J., Kaymak, U., Van den Bergh, W.M.: Financial markets analysis by using a probabilistic fuzzy modelling approach. Int. J. Approx. Reason. 35(3), 291–305 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Szumiński, W.: Integrability analysis of chaotic and hyperchaotic finance systems. Nonlinear Dyn. 94(1), 443–459 (2018)

    Article  MATH  Google Scholar 

  45. Thangavel, B., Srinivasan, S., Kathamuthu, T.: Extreme events in a forced BVP oscillator: Experimental and numerical studies. Chaos Solitons Fract. 153, 111569 (2021)

    Article  Google Scholar 

  46. Bonatto, C., Endler, A.: Extreme and superextreme events in a loss-modulated \(CO_{2}\) laser: Nonlinear resonance route and precursors. Phys. Rev. E 96(1), 012216 (2017)

    Article  Google Scholar 

  47. Kingston, S.L., Thamilmaran, K., Pal, P., Feudel, U., Dana, S.K.: Extreme events in the forced Liénard system. Phys. Rev. E 96(5), 052204 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. A. Ishaq Ahamed for their valuable comments and suggestions. T. Kathamuthu acknowledges the financial support of the Department of Science and Technology (DST)-PURSE PHASE-II, Government of India, under PURSE scheme. S. Srinivasan acknowledges the Basic Research Program of the National Research University, Higher School of Economics, Moscow. The authors would like to thank Shibaura Institute of Technology and Toyota Technological Institute, Japan, for the financial aid to support this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisheng Zhai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangavel, B., Srinivasan, S., Kathamuthu, T. et al. Dynamical Analysis of T–S Fuzzy Financial Systems: A Sampled-Data Control Approach. Int. J. Fuzzy Syst. 24, 1944–1957 (2022). https://doi.org/10.1007/s40815-022-01249-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01249-4

Keywords

Navigation