Guaranteed Cost Impulsive Control of Nonlinear Positive Systems Via T–S Fuzzy Model | International Journal of Fuzzy Systems Skip to main content
Log in

Guaranteed Cost Impulsive Control of Nonlinear Positive Systems Via T–S Fuzzy Model

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This work investigates the guaranteed cost impulsive control of nonlinear positive systems via the T–S fuzzy model-based approach. A fuzzy impulsive control strategy is constructed using the parallel distributed compensation (PDC) technique, and the closed-loop form is then cast into an impulsive dynamic system. Furthermore, through the constructed discretized copositive Lyapunov function, the existence condition of impulsive controller is obtained for ensuring the closed-loop system to be positive and exponentially stable, and a specific level of performance can also be guaranteed. The salient feature of the proposed controller design methodology is that the impulse interval partitioning technique is made full use of to get less conservative conditions. Finally, a pest management application demonstrates the usefulness of the developed impulsive controller design technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Benzaouia, A., Oubah, R., Hajjaji, A.E.: Stabilization of positive Takagi–Sugeno fuzzy discrete-time systems with multiple delays and bounded controls. J. Franklin Inst. 351(7), 3719–3733 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bokharaie, V.S., Mason, O.: On delay-independent stability of a class of nonlinear positive time-delay systems. IEEE Trans. Autom. Control 59(7), 1974–1977 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brentari, M., Urbina, S., Arzelier, D., Louembet, C., Zaccarian, L.: A hybrid control framework for impulsive control of satellite rendezvous. IEEE Trans. Control Syst. Technol. 27(4), 1537–1551 (2019)

    Article  Google Scholar 

  4. Briat, C.: Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints. Automatica 74, 279–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Briat, C.: Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems. Nonlinear Anal. Hybrid Syst 24, 198–226 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Briat, C., Seuret, A.: A looped-functional approach for robust stability analysis of linear impulsive systems. Syst. Control Lett. 61(10), 980–988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, S., Peng, T.: Adaptive guaranteed cost control of systems with uncertain parameters. IEEE Trans. Autom. Control 17(4), 474–483 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, T., Liu, X.: \(\mu\)-stability of nonlinear positive systems with unbounded time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1710–1715 (2017)

    Article  MathSciNet  Google Scholar 

  9. Chen, W.H., Li, D.X., Lu, X.: Impulsive observers with variable update intervals for Lipschitz nonlinear time-delay systems. Int. J. Syst. Sci. 44(10), 1934–1947 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Lam, J., Lam, H.K.: Positive filtering for positive Takagi–Sugeno fuzzy systems under \(l_1\) performance. Inf. Sci. 299, 32–41 (2015)

    Article  MATH  Google Scholar 

  11. Chen, W.H., Zhen, R., Wei Xing, Z.: Stability and \({L}_2\)-gain analysis for impulsive delay systems: An impulse-time-dependent discretized Lyapunov functional method. Automatica 86, 129–137 (2017)

    Article  MATH  Google Scholar 

  12. Chen, X., Lam, J., Meng, M.: Controller synthesis for positive Takagi–Sugeno fuzzy systems under \(l_1\) performance. Int. J. Syst. Sci. 48(3), 515–524 (2017)

    Article  MATH  Google Scholar 

  13. Chen, X., Wang, L., Chen, M., Shen, J.: \(l_{\infty }\)-induced output-feedback controller synthesis for positive nonlinear systems via T–S fuzzy model approach. Fuzzy Sets Syst. 385, 98–110 (2020)

    Article  MATH  Google Scholar 

  14. Fadali, M.S., Jafarzadeh, S.: Stability analysis of positive interval type-2 TSK systems with application to energy markets. IEEE Trans. Fuzzy Syst. 22(4), 1031–1038 (2013)

    Article  Google Scholar 

  15. Feng, J., Lam, J., Shu, Z., Wang, Q.: Internal positivity preserved model reduction. Int. J. Control 83(3), 575–584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goodwin, G.C., Carrasco, D.S., Seron, M.M., Medioli, A.M.: A fundamental control performance limit for a class of positive nonlinear systems. Automatica 95, 14–22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, H., Chen, L.: Time-limited pest control of a Lotka–Volterra model with impulsive harvest. Nonlinear Anal. Real World Appl. 10(2), 840–848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haddad, W.M., Chellaboina, V.: Stability and dissipativity theory for nonnegative dynamical systems: A unified analysis framework for biological and physiological systems. Nonlinear Anal. Real World Appl. 6(1), 35–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, M.J., Xiao, J.W., Xiao, R.B., Chen, W.H.: Impulsive effects on the stability and stabilization of positive systems with delays. J. Franklin Inst. 354(10), 4034–4054 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, M.J., Wang, Y.W., Xiao, J.W.: On finite-time stability and stabilization of positive systems with impulses. Nonlinear Anal. Hybrid Syst. 31, 275–291 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X., Cao, J.: An impulsive delay inequality involving unbounded time-varying delay and applications. IEEE Trans. Autom. Control 62(7), 3618–3625 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, P., Lam, J.: Positive state-bounding observer for positive interval continuous-time systems with time delay. Int. J. Robust Nonlinear Control 22(11), 1244–1257 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X., Song, S.: Stabilization of delay systems: Delay-dependent impulsive control. IEEE Trans. Automat. Control 62(1), 406–411 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Yu, C., Gao, H.: Frequency-limited \(H_{\infty }\) model reduction for positive systems. IEEE Trans. Autom. Control 60(4), 1093–1098 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, J., Lian, J., Zhuang, Y.: Output feedback \(l_1\) finite-time control of switched positive delayed systems with mdadt. Nonlinear Anal. Hybrid Syst. 15, 11–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, Z., Chi, X., Chen, L.: Impulsive control strategies in biological control of pesticide. Theor. Popul. Biol. 64(1), 39–47 (2003)

    Article  MATH  Google Scholar 

  27. Lv, H., Zhang, Q., Yan, X.: Robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems via hybrid impulsive control. Int. J. Robust Nonlinear Control 25(7), 987–1006 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meng, M., Lam, J., Feng, J., Zhao, X., Chen, X.: Exponential stability analysis and \(l_1\) synthesis of positive t–s fuzzy systems with time-varying delays. Nonlinear Anal. Hybrid Syst 24, 186–197 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qi, W., Park, J.H., Cheng, J., Chen, X.: Stochastic stability and l1-gain analysis for positive nonlinear semi-Markov jump systems with time-varying delay via t–s fuzzy model approach. Fuzzy Sets Syst. 371, 110–122 (2019)

    Article  MATH  Google Scholar 

  30. Qi, W., Zong, G., Karimi, H.R.: \(L_{\infty }\) control for positive delay systems with semi-Markov process and application to a communication network model. IEEE Trans. Ind. Electron. 66(3), 2081–2091 (2019)

    Article  Google Scholar 

  31. Rivadeneira, P.S., Ferramosca, A., González, A.H.: Control strategies for nonzero set-point regulation of linear impulsive systems. IEEE Trans. Autom. Control 63(9), 2994–3001 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shao, H., Zhao, J.: Dwell-time-dependent stability results for impulsive systems. IET Control Theory Appl. 11(7), 1034–1040 (2017)

    Article  MathSciNet  Google Scholar 

  33. Shao, H., Zhao, J.: A Lyapunov-like functional approach to stability for impulsive systems with polytopic uncertainties. J. Frankl. Inst. 354(16), 7463–7475 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, J.: Analysis and Synthesis of Dynamic Systems with Positive Characteristics. Springer, New York (2017)

    Book  MATH  Google Scholar 

  35. Shen, J., Lam, J.: Stability and performance analysis for positive fractional-order systems with time-varying delays. IEEE Trans. Autom. Control 61(9), 2676–2681 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, L., Lam, H.K.: \(H_{\infty }\) control for continuous-time Takagi–Sugeno fuzzy model by applying generalized Lyapunov function and introducing outer variables. Automatica 125, 109409 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Z.P., Wu, H.N.: Fuzzy impulsive control for uncertain nonlinear systems with guaranteed cost. Fuzzy Sets Syst. 302, 143–162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, J., Liang, J., Wang, L.: Switched mechanisms for stability and l1-gain analysis of t-s fuzzy positive systems described by the F–M second model. J. Frankl. Inst. 355(3), 1351–1372 (2018)

    Article  MATH  Google Scholar 

  40. Wang, L., Liu, J., Lam, H.K.: Further study on stabilization for continuous-time Takagi–Sugeno fuzzy systems with time delay. IEEE Trans. Cybern. 13, 1–7 (2020). https://doi.org/10.1109/TCYB.2020.2973276

    Article  Google Scholar 

  41. Wu, R., Fečkan, M.: Stability analysis of impulsive fractional-order systems by vector comparison principle. Nonlinear Dyn. 82(4), 2007–2019 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu, X., Tang, Y., Zhang, W.: Input-to-state stability of impulsive stochastic delayed systems under linear assumptions. Automatica 66, 195–204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xiang, W., Lam, J., Shen, J.: Stability analysis and \(l_1\)-gain characterization for switched positive systems under dwell-time constraint. Automatica 85, 1–8 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xie, X., Lam, J.: Guaranteed cost control of periodic piecewise linear time-delay systems. Automatica 94, 274–282 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xie, C.H., Yang, G.H.: Approximate guaranteed cost fault-tolerant control of unknown nonlinear systems with time-varying actuator faults. Nonlinear Dyn. 83(1–2), 269–282 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xie, X., Yue, D., Peng, C.: Relaxed real-time scheduling stabilization of discrete-time Takagi–Sugeno fuzzy systems via an alterable-weights-based ranking switching mechanism. IEEE Trans. Fuzzy Syst. 26(6), 3808–3819 (2018)

    Article  Google Scholar 

  47. Xie, X., Yue, D., Peng, C.: Observer design of discrete-time fuzzy systems based on an alterable weights method. IEEE Trans. Cybern. 50(4), 1430–1439 (2020)

    Article  Google Scholar 

  48. Yang, X., Yang, Z., Nie, X.: Exponential synchronization of discontinuous chaotic systems via delayed impulsive control and its application to secure communication. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1529–1543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, X., Peng, D., Lv, X., Li, X.: Recent progress in impulsive control systems. Math. Comput. Simul. 155, 244–268 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, J.S., Wang, Y.W., Xiao, J.W., Guan, Z.H.: Stability analysis of impulsive positive systems. IFAC Proc. 47(3), 5987–5991 (2014)

    Article  Google Scholar 

  51. Zhang, T., Meng, X., Liu, R., Zhang, T.: Periodic solution of a pest management Gompertz model with impulsive state feedback control. Nonlinear Dyn. 78(2), 921–938 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, J., Raïssi, T., Li, S.: Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays. Nonlinear Dyn. 97, 1–2 (2019)

    Article  MATH  Google Scholar 

  53. Zhang, N., Kang, Y., Yu, P.: Stability analysis of discrete-time switched positive nonlinear systems with unstable subsystems under different switching strategies. IEEE Trans. Circ. Syst. II Express Briefs 68(6), 1957–1961 (2021)

    Google Scholar 

  54. Zhao, P., Zhao, Y., Song, X.: Stochastic stability of nonlinear positive systems with random switching signals. Nonlinear Anal. Hybrid Syst. 38, 100940 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zheng, X., Wang, X., Yin, Y., Hu, L.: Stability analysis and constrained fuzzy tracking control of positive nonlinear systems. Nonlinear Dyn. 83(4), 2509–2522 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhu, B., Suo, M., Chen, L., Li, S.: Stability and \({L_{1}}\)-gain analysis for positive Takagi–Sugeno fuzzy systems with impulse. IEEE Trans. Fuzzy Syst. 26(6), 3893–3901 (2018)

    Article  Google Scholar 

  57. Zhu, B., Zhang, J., Suo, M., Chen, L., Zhang, Y., Li, S.: Robust stability analysis and controller synthesis for uncertain impulsive positive systems under \(L_{1}\)-gain performance. ISA Trans. 93C, 55–69 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2020QF051, ZR2020QH019), the Traditional Chinese Medicine Science and Technology Project of Shandong Province (Grant No. 2020M041), Clinical Medicine Science and Technology Innovation Plan of Jinan City(No. 202019093), and the Medical Health Science and Technology Development Plan of Shandong Province (Grant No. 2019WS496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Wang, H., Zhang, J. et al. Guaranteed Cost Impulsive Control of Nonlinear Positive Systems Via T–S Fuzzy Model. Int. J. Fuzzy Syst. 24, 1467–1477 (2022). https://doi.org/10.1007/s40815-021-01202-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01202-x

Keywords

Navigation