Multiobjective H2/H∞ Control Design for Nonlinear Stochastic Chaotic Systems via a Front-Squeezing LMIs-Constrained MOEA | International Journal of Fuzzy Systems Skip to main content
Log in

Multiobjective H2/H Control Design for Nonlinear Stochastic Chaotic Systems via a Front-Squeezing LMIs-Constrained MOEA

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This study proposes the multiobjective \(H_{2}/H_{{\infty }}\) fuzzy control design for a nonlinear stochastic chaotic system via concurrently optimizing \(H_{2}\) and \(H_{{\infty }}\) performance indices in a Pareto optimal sense. Using the Takagi–Sugeno fuzzy model to approximate the nonlinear stochastic chaotic system, the multiobjective \(H_{2}/H_{{\infty}}\) fuzzy control design problem can be transformed into a linear matrix inequalities (LMIs)-constrained multiobjective optimization problem (an LMIs-constrained MOP). By the help of the LMIs-constrained multiobjective evolution algorithm (LMIs-constrained MOEA), one can obtain the Pareto optimal controller. However, the existing LMIs-constrained MOEA usually couples with a heavy computational load. This study proposes the front-squeezing LMIs-constrained MOEA to resolve such a computational cost problem. Finally, a simulation example is presented to verify the effectiveness of the proposed theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, Hoboken (2004)

    Google Scholar 

  2. Sung, H.C., Kim, D.W., Park, J.B., Joo, Y.H.: Robust digital control of fuzzy systems with parametric uncertainties: LMI-based digital redesign approach. Fuzzy Sets Syst. 161, 919–933 (2010)

    Article  MathSciNet  Google Scholar 

  3. Framstad, N.C., Øksendal, B., Sulem, A.: Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs. J. Math. Econ. 35, 233–257 (2001)

    Article  MathSciNet  Google Scholar 

  4. Chen, W.H., Chen, H.B.S.: Robust stabilization design for nonlinear stochastic system with poisson noise via fuzzy interpolation method. Fuzzy Sets Syst. 217, 41–61 (2013)

    Article  MathSciNet  Google Scholar 

  5. Wu, C.F., Chen, B.S.: Multiobjective control for nonlinear stochastic jump diffusion system. SICE Annu. Conf. 2014, 1890–1895 (2014)

    Google Scholar 

  6. Chen, B.S., Tseng, C.S., Uang, H.J.: Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach. IEEE Trans. Fuzzy Syst. 8, 249–265 (2000)

    Article  Google Scholar 

  7. Chiu, W.Y.: Multiobjective controller design by solving a multiobjective matrix inequality problem. IET Control Theory Appl. 8, 1656–1665 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chen, B.S., Lee, H.C., Wu, C.F.: Pareto optimal filter design for nonlinear stochastic fuzzy systems via multiobjective H2/H∞ optimization. IEEE Trans. Fuzzy Syst. 23(2), 387–399 (2015)

    Article  Google Scholar 

  9. Pan, I., Das, S., Das, S.: Multi-objective active control policy design for commensurate and incommensurate fractional order chaotic financial systems. Appl. Math. Model. 39, 500–514 (2015)

    Article  MathSciNet  Google Scholar 

  10. Engwerda, J.: LQ Dynamic Optimization and Differential Games. Wiley, Hoboken (2005)

    Google Scholar 

  11. Wu, C.F., Chen, B.S.: Multiobjective H2/H∞ control for nonlinear stochastic Poisson jump systems via polytopic linear model and Pareto optimal approach. Fuzzy Sets Syst. 385, 148–168 (2020)

    Article  Google Scholar 

  12. Ma, J.H., Chen, Y.S.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Appl. Math. Mech. 22, 1240–1251 (2001)

    Article  MathSciNet  Google Scholar 

  13. Ma, J.H., Chen, Y.S.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II). Appl. Math. Mech. 22, 1240–1251 (2001)

    Article  MathSciNet  Google Scholar 

  14. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  15. Lorenz, H.W.: Nonlinear Economic Dynamics and Chaotic Motion. Springer, New York (1993)

    Book  Google Scholar 

  16. Liu, G.P., Yang, J.B., Whidborne, J.F.: Multiobjective Optimisation and Control. RSP Ltd., Hertfordshire (2002)

    Google Scholar 

  17. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13, 284–302 (2009)

    Article  Google Scholar 

  18. Chiu, W.Y., Chen, B.S., Poor, H.V.: A multiobjective approach for source estimation in fuzzy networked systems. IEEE Trans. Circuits Syst. I(60), 1890–1900 (2013)

    Article  MathSciNet  Google Scholar 

  19. Chen, B.S., Chen, W.Y., Young, C.T., Yan, Z.: Noncooperative game strategy in cyber-financial systems with Wiener and Poisson random fluctuations: LMIs-constrained MOEA approach. IEEE Trans. Cybern. 48, 3323–3336 (2018)

    Article  Google Scholar 

  20. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Springer, Berlin (2007)

    Book  Google Scholar 

  21. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  22. Khasminskii, R., Milstein, G.N.: Stochastic Stability of Differential Equations, 2nd edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  23. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.:Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  24. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms 2. Wiley, New York (2004)

    MATH  Google Scholar 

  25. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  26. Wu, C.F., Chen, B.S., Zhang, W.: Multiobjective H2/H∞ control design of the nonlinear mean-field stochastic jump-diffusion systems via fuzzy approach. IEEE Trans. Fuzzy Syst. 27, 686–700 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the partial financial support from the Ministry of Science and Technology of Republic of China under Grant MOST 108-2221-E-032-039-MY2 and Grant MOST 109-2222-E-032-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fei Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CF., Hsu, CF. & Hwang, CK. Multiobjective H2/H Control Design for Nonlinear Stochastic Chaotic Systems via a Front-Squeezing LMIs-Constrained MOEA. Int. J. Fuzzy Syst. 23, 2371–2383 (2021). https://doi.org/10.1007/s40815-021-01149-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01149-z

Keywords

Navigation