Deep Convolutional Neural Network-Based Autonomous Marine Vehicle Maneuver | International Journal of Fuzzy Systems Skip to main content

Advertisement

Log in

Deep Convolutional Neural Network-Based Autonomous Marine Vehicle Maneuver

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The automation level of autonomous marine vehicle is limited which is always semi-autonomy and reliant on operator interactions. In order to improve it, an autonomous collision avoidance method is proposed based on the visual technique as human’s visual system. A deep convolutional neural network (Alexnet), with strong visual processing capability, is adopted for encounter pattern recognition. European Ship Simulator is used to generate some encounter scenes and record the corresponding maneuver operation conforming to the COLREGs (International Regulations for Preventing Collisions at Sea) rules as samples. After the training phase, of Alexnet, it can successfully predict the collision avoidance operation according to the input scene image like crewman; moreover, this can provide operation guidance for the automatic navigation, guidance and control system. Some different encounter situations are simulated, and used to testify the validity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang, N., Qian, C., Sun, J., Liu, Y.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Article  Google Scholar 

  2. Wu, D., Ren, F.: An active disturbance rejection controller for marine dynamic positioning system based on biogeography-based optimization. In: Paper Presented at the 34th Chinese Control Conference, Hangzhou, China, July 28–30 (2015)

  3. Campbell, S., Naeem, W., Irwin, G.W.: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annu. Rev. Control 36(2), 267–283 (2012)

    Article  Google Scholar 

  4. Wang, N., Er, M.J., Sun, J., Liu, Y.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46(7), 1511–1523 (2016)

    Article  Google Scholar 

  5. Xiang, X., Yu, C., Zhang, Q.: Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84, 165–177 (2017)

    Article  MathSciNet  Google Scholar 

  6. Perera, L.P., Carvalho, J.P., Soares, C.G.: Intelligent ocean navigation and fuzzy-Bayesian decision/action formulation. IEEE J. Ocean. Eng. 37(2), 204–219 (2012)

    Article  Google Scholar 

  7. Tran, T.: Avoidance navigation totally integrated system. Universtiy of Southamton, PhD (2001)

    Google Scholar 

  8. Wang, N., Lv, S., Er, M.J., Chen, W.: Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances. IEEE Trans. Intell. Veh. 1(3), 230–243 (2016)

    Article  Google Scholar 

  9. Xiang, X., Yu, C., Zhang, Q.: On intelligent risk analysis and critical decision of underwanter robotic vehicle. Ocean. Eng. (2017) (In press)

  10. Harris, C.J., Hong, X., Wilson, P.A.: An intelligent guidance and control system for ship obstacle avoidance. Proc. Inst. Mech. Eng. 213, 311–320 (1999)

    Google Scholar 

  11. Tam, C., Bucknall, R., Greig, A.: Review of collision avoidance and path planning methods for ships in close range encounters. J. Navig. 62(3), 455–476 (2009)

    Article  Google Scholar 

  12. Park, C., Kim, Y., Jeong, B.: Heuristics for determining a patrol path of an unmanned combat vehicle. Comput. Ind. Eng. 63(1), 150–160 (2012)

    Article  Google Scholar 

  13. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  14. Wu, D., Ren, F., Zhang, W.: An energy optimal thrust allocation method for the marine dynamic positioning system based on adaptive hybrid artificial bee colony algorithm. Ocean Eng. 118, 216–226 (2016)

    Article  Google Scholar 

  15. Al-Dabbagh, R.D., Mekhilef, S., Baba, M.S.: Parameters’ fine tuning of differential evolution algorithm. Comput. Syst. Sci. Eng. 30(2), 125–139 (2015)

    Google Scholar 

  16. Szlapczynski, R.: Evolutionary sets of safe ship trajectories: a new approach to collision avoidance. J. Navig. 64(1), 169–181 (2011)

    Article  Google Scholar 

  17. Szlapczynski, R.: Evolutionary sets of safe ship trajectories within traffic separation schemes. J. Navig. 66(1), 65–81 (2013)

    Article  Google Scholar 

  18. Wang, N., Sun, J., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2017)

    Google Scholar 

  19. Jianmin, W., Gongbao, W.: Trajectory optimization for warship based on adaptive genetic algorithm. J. Wuhan Univ. (Technol. Transp. Sci. Eng.) 33(2), 382–385 (2009)

    Google Scholar 

  20. Skinner, B., Yuan, S., Huang, S., Liu, D., Cai, B., Dissanayake, G., Lau, H., Bott, A., Pagac, D.: Optimisation for job scheduling at automated container terminals using genetic algorithm. Comput. Ind. Eng. 64(1), 511–523 (2013)

    Article  Google Scholar 

  21. Al-Dabbagh, M.D., Al-Dabbagh, R.D., Abdullah, R.S.A.R., Hashim, F.: A new modified differential evolution algorithm scheme-based linear frequency modulation radar signal de-noising. Eng. Optim. 47(6), 771–787 (2015)

    Article  Google Scholar 

  22. Wang, N., Su, S.F., Yin, J., Zheng, Z., Meng, J.E.: Global Asymptotic Model-Free Trajectory-Independent Tracking Control of an Uncertain Marine Vehicle: An Adaptive Universe-Based Fuzzy Control Approach. IEEE T Fuzzy Syst PP(99), 1 (2017)

    Google Scholar 

  23. Tsou, M., Hsueh, C.: The study of ship collision avoidance route planning by ant colony algorithm. J. Mar. Sci. Technol. Taiwan 18(5), 746–756 (2010)

    Google Scholar 

  24. Xu, Q.: Collision avoidance strategy optimization based on danger immune algorithm. Comput. Ind. Eng. 76, 268–279 (2014)

    Article  Google Scholar 

  25. Tam, C., Bucknall, R.: Path-planning algorithm for ships in close-range encounters. J. Mar. Sci. Technol. Jpn. 15(4), 395–407 (2010)

    Article  Google Scholar 

  26. Chiang, S., Wei, C., Chen, C.: Real-time self-localization of a mobile robot by vision and motion system. Int. J. Fuzzy Syst. 18(6), 999–1007 (2016)

    Article  MathSciNet  Google Scholar 

  27. Chang, J., Wang, R., Wang, W., Huang, C.: Implementation of an object-grasping robot arm using stereo vision measurement and fuzzy control. Int. J. Fuzzy Syst. 17(2), 193–205 (2015)

    Article  Google Scholar 

  28. Carrio, A., Lin, Y., Saripalli, S., Campoy, P.: Obstacle detection system for small UAVs using ADS-B and thermal imaging. J. Intell. Robot. Syst. 10, 1–13 (2017)

    Article  Google Scholar 

  29. Wang, N., Sun, J.C., Han, M., Zheng, Z., Er, M.J.: Adaptive approximation-based regulation control for a class of uncertain nonlinear systems without feedback linearizability. IEEE Trans. Neural Netw. Learn. PP(99), 1–14 (2017)

    Google Scholar 

  30. Guo, L., Chen, L., Wu, Y., Philip Chen C.L.: Image Guided Fuzzy C-Means for Image Segmentation. Int. J. Fuzzy Syst. (2017). doi:10.1007/s40815-017-0322-1

  31. LeCun, Y., Bottou, L.E.O., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  32. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Paper Presented at the Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 3–6 December (2012)

  34. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Paper Presented at the 2014 European Conference on Computer Vision, Zurich, Switzerland, 6–12 September (2014)

  35. Ding, C., Tao, D.: Robust face recognition via multimodal deep face representation. IEEE Trans. Multimedia 17(11), 2049–2058 (2015)

    Article  Google Scholar 

  36. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Paper Presented at the International Conference on Machine Learning, Haifa, Israel, June 21–24 (2010)

  37. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  38. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Wang, N., Qian, C., Sun, Z.: Global asymptotic output tracking of nonlinear second-order systems with power integrators. Automatica 80, 156–161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Perera, L.P., Carvalho, J.P., Guedes Soares, C.: Decision making system for the collision avoidance of marine vessel navigation based on COLREGs rules and regulations. In: Paper Presented at the Proceedings of 13th Congress of International Maritime Association of Mediterranean, Istanbul, Turkey, October 12–15 (2009)

  41. Yin, J., Wang, N., Perakis, A.N.: A real-time sequential ship roll prediction scheme based on adaptive sliding data window. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–11 (2017)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of National Natural Science Foundation of China (61603214, 61573213) and the Shandong Provincial Natural Science Foundation of China (ZR2015PF009, 2016ZRE2703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Yang, Y., Zhang, C. et al. Deep Convolutional Neural Network-Based Autonomous Marine Vehicle Maneuver. Int. J. Fuzzy Syst. 20, 687–699 (2018). https://doi.org/10.1007/s40815-017-0393-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0393-z

Keywords

Navigation