Structural bifurcation analysis of vortex shedding from shear flow past circular cylinder | Computational and Applied Mathematics Skip to main content
Log in

Structural bifurcation analysis of vortex shedding from shear flow past circular cylinder

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the unsteady flow separation of two-dimensional (2-D) incompressible shear flow past a circular cylinder is studied using theoretical structural bifurcation analysis based on topological equivalence. The stream function vorticity form of Navier–Stokes (N–S) equations in cylindrical polar coordinates are considered as the governing equations. Numerical simulations are performed, using higher-order compact finite difference scheme (Kalita and Ray J Comput Phys 228:5207–5236 2009), for the Reynolds number (Re) 100, 200 and shear parameter (K) 0.0, 0.05, 0.1 and 0.2. Through this structural bifurcation analysis, the exact location and time of occurrence of bifurcation points (flow separation points) associated with primary and secondary vortices are studied. In this process, the instantaneous vorticity contours and streakline patterns, center-line velocity fluctuation, lift and drag coefficients, phase diagram are also studied to confirm the theoretical results. Unlike the shear flow past a square cylinder, in this case, the structural bifurcation occurs from the downstream surface of the circular cylinder for the same Reynolds number. All the computed results very efficiently and very accurately reproduce the complex flow phenomena. Through this study, many noticeable and interesting results for this problem are reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adachi T, Kato E (1975) Study on the flow about a circular cylinder in shear flow. Trans Jpn Soc Aeronaut Sp Sci 256:45–53

    Google Scholar 

  • Barkley D, Henderson RD (1996) Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J Fluid Mech 322:215–241

    Article  Google Scholar 

  • Breuer M (1998) Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects. Int J Numer Methods Fluids 28:1281–1302

    Article  Google Scholar 

  • Cao S, Ozono S, Tamura Y, Ge Y, Kikugawa H (2010) Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder. J Fluids Struct 26:685–702

    Article  Google Scholar 

  • Chew YT, Lou SC, Cheng M (1997) Numerical study of a linear shear flow past a rotating cylinder. J Wind Eng Ind Aerodyn 66:107–125

    Article  Google Scholar 

  • Dyke MV (2007) An album of fluid motion. The Parabolic Press, California

    Google Scholar 

  • Ghil M, Liu JG, Wang C, Wang S (2004) Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow. Physica D 197:149–173

    Article  MathSciNet  Google Scholar 

  • Ghil M, Ma T, Wang S (2005) Structural bifurcation of 2-d nondivergent flows with Dirichlet boundary conditions applications to boundary-layer separation. SIAM J Appl Math 65:1576–1596

    Article  MathSciNet  Google Scholar 

  • Henderson RD (1997) Nonlinear dynamics and pattern formation in turbulent wake transition. J Fluid Mech 352:65–112

    Article  MathSciNet  Google Scholar 

  • Jordan SK, Fromm JE (1972) Laminar flow past a circle in a shear flow. Phys Fluids 15:972–976

    Article  Google Scholar 

  • Kalita JC, Ray RK (2009) A transformation-free hoc scheme for incompressible viscous flows past an impulsively started circular cylinder. J Comput Phys 228:5207–5236

    Article  MathSciNet  Google Scholar 

  • Kalita JC, Sen S (2013) Unsteady separation leading to secondary and tertiary vortex dynamics: the sub-\(\alpha \)- and sub-\(\beta \)-phenomenon. J Fluid Mech 730:19–51

    Article  MathSciNet  Google Scholar 

  • Kang S (2006) Uniform-shear flow over a circular cylinder at low Reynolds numbers. J Fluids Struct 22:541–555

    Article  Google Scholar 

  • Kawamura T, Takami H (1986) Computation of high Reynolds number flow around a circular cylinder with surface roughness. Fluid Dyn Res 1:145–162

    Article  Google Scholar 

  • Kiya M, Tamura H, Arie M (1980) Vortex shedding from a circular cylinder in moderate Reynolds number shear flow. J Fluid Mech 141:721–735

    Article  Google Scholar 

  • Kravchenko AG, Moin P (2000) Numerical studies of flow over a circular cylinder at \(Re_D=3900\). Phys Fluids 12:403

    Article  Google Scholar 

  • Kumar A, Ray RK (2015) Numerical study of shear flow past a square cylinder at Reynolds numbers 100, 200. Procedia Eng 127:102–109

    Article  Google Scholar 

  • Kumar A, Ray RK (2016) Higher order compact numerical simulation of shear flow past inclined square cylinder. In: Advanced computing and communication technologies, pp 305–313

  • Kumar A, Ray RK (2017) A numerical simulation of shear flow past two equal sized square cylinders arranged in parallel at \(Re = 500\). In: AIP Conference Proceedings, vol 1863 ,No (1), pp 490003

  • Kumar A, Ray RK (2018) Numerical simulation of flow around square cylinder with an inlet shear in a closed channel, applications of fluid dynamics, lecture notes in mechanical engineering, pp 297–304

  • Kwon TS, Sung HJ, Hyun JM (1992) Experimental investigation of uniform-shear flow past a circular cylinder. Trans ASME J Fluids Eng 114:457–460

    Article  Google Scholar 

  • Lankadasu A, Vengadesan S (2010) Shear effect on square cylinder wake transition characteristics. Int J Numer Methods Fluids 67:1112–1134

    MATH  Google Scholar 

  • Lei C, Cheng L, Kavanagh K (2000) A finite difference solution of the shear flow over a circular cylinder. Ocean Eng 27:271–290

    Article  Google Scholar 

  • Mittal HVR, Ray RK, Al-Mdallal QM (2017) A numerical study of initial flow past an impulsively started rotationally oscillating circular cylinder using a transformation-free HOC scheme. Phys Fluids 29:093603

    Article  Google Scholar 

  • Norberg C (1994) An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J Fluid Mech 258:287–316

    Article  Google Scholar 

  • Ozgoren M (2006) Flow structures in the downstream of square and circular cylinders. Fluid Meas Instrum 17:225–235

    Article  Google Scholar 

  • Raghava Rao CV (1991) Numerical study of slow viscous flow with shear past a circular cylinder. Indian J Pure Appl Math 23:377–386

    MATH  Google Scholar 

  • Raghava Rao CV, Sanyasiraju YVSS (1996) Steady simple shear flow past circular cylinder at moderate and high Reynolds numbers—a numerical study. J Indian Inst Sci 76:379–387

    MATH  Google Scholar 

  • Rajani BN, Kandasamy A, Majumdar S (2009) Numerical simulation of laminar flow past a circular cylinder. Appl Math Model 33:1228–1247

    Article  MathSciNet  Google Scholar 

  • Ray RK (2011) A transformation-free hoc scheme for incompressible viscous flow past a rotating and translating circular cylinder. J Sci Comput 46:265–293

    Article  MathSciNet  Google Scholar 

  • Ray RK, Kalita JC (2010) A transformation-free hoc scheme for incompressible viscous flows on nonuniform polar grids. Int J Numer Methods Fluids 62:683–708

    MathSciNet  MATH  Google Scholar 

  • Ray RK, Kumar A (2017) Numerical study of shear rate effect on unsteady flow separation from the surface of the square cylinder using structural bifurcation analysis. Phys Fluids 29:083604

    Article  Google Scholar 

  • Roshko A (1993) Perspectives on bluff body aerodynamics. J Wind Eng Ind Aerodyn 49:79–100

    Article  Google Scholar 

  • Subramanian G, Raghava Rao CV, Pramadavalli K (1987) A circular cylinder in a flow field with parabolic velocity distribution—a numerical study. Comput Math Appl 14:127–132

    Article  Google Scholar 

  • Sumner D, Akosile OO (2003) On uniform planar shear flow around a circular cylinder at subcritical Reynolds number. J Fluids Struct 18:441–454

    Article  Google Scholar 

  • Tamura H, Kiya M, Arie M (1980) Numerical study on viscous shear flow past a circular cylinder. JSME Bull 23:1952–1958

    Article  Google Scholar 

  • Williamson CHK (1996) Vortex dynamics in the cylinder wake. Annu Rev Fluid Mech 28:477

    Article  MathSciNet  Google Scholar 

  • Williamson CHK, Roshko A (1988) Vortex formation in the wake of an oscillating cylinder. J Fluids Struct 2:355–381

    Article  Google Scholar 

  • Zdravkovich MM (1997) Flow around circular cylinders. Fundamentals, vol 1. Oxford University Press, Oxford

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation for the valuable comments of the reviewers. The authors would also like to express their sincere appreciation to SERB (DST), Govt. of India for providing the financial support (No.: SERB/F/7046/2013-2014 dated 12.02.2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Ray.

Additional information

Communicated by Corina Giurgea.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The expressions for the finite difference operators appearing in the above equations are as follows:

$$\begin{aligned} \delta _r\phi _{i,j}= & {} \frac{\phi _{i+1,j}-\phi _{i-1,j}}{2\Delta r},\\ \delta _\theta \phi _{i,j}= & {} \frac{\phi _{i,j+1}-\phi _{i,j-1}}{2\Delta \theta },\\ \delta _r^2\phi _{i,j}= & {} \frac{1}{\Delta r}\bigg \lbrace \frac{\phi _{i+1,j}}{r_\mathrm{f}}-\bigg (\frac{1}{r_\mathrm{f}}+\frac{1}{r_\mathrm{b}}\bigg ) \phi _{i,j}+\frac{\phi _{i-1,j}}{r_\mathrm{b}}\bigg \rbrace ,\\ \delta _\theta ^2\phi _{i,j}= & {} \frac{1}{\Delta \theta }\bigg \lbrace \frac{\phi _{i,j+1}}{\theta _\mathrm{f}}-\bigg (\frac{1}{\theta _\mathrm{f}}+\frac{1}{\theta _\mathrm{b}}\bigg )\phi _{i,j}+\frac{\phi _{i,j-1}}{\theta _\mathrm{b}}\bigg \rbrace ,\\ \delta _r^2\delta _\theta \phi _{i,j}= & {} \frac{1}{2\Delta r\Delta \theta }\bigg \lbrace \frac{1}{r_\mathrm{f}}(\phi _{i+1,j+1}-\phi _{i+1,j-1})-\bigg (\frac{1}{r_\mathrm{f}}+\frac{1}{r_\mathrm{b}}\bigg )(\phi _{i,j+1}-\phi _{i,j-1}) \\&+\frac{1}{r_\mathrm{b}}(\phi _{i-1,j+1}-\phi _{i-1,j-1})\bigg \rbrace ,\\ \delta _r\delta _\theta ^2\phi _{i,j}= & {} \frac{1}{2\Delta r\Delta \theta }\bigg \lbrace \frac{1}{\theta _\mathrm{f}}(\phi _{i+1,j+1}-\phi _{i-1,j+1})-\bigg (\frac{1}{\theta _\mathrm{f}}+\frac{1}{\theta _\mathrm{b}}\bigg )(\phi _{i+1,j}-\phi _{i-1,j}) \\&+\frac{1}{\theta _\mathrm{b}}(\phi _{i+1,j-1}-\phi _{i-1,j-1})\bigg \rbrace ,\\ \delta _r^2\delta _\theta ^2\phi _{i,j}= & {} \frac{1}{\Delta r\Delta \theta }\bigg \lbrace \frac{\phi _{i+1,j+1}}{r_\mathrm{f}\theta _\mathrm{f}}+\frac{\phi _{i-1,j+1}}{r_\mathrm{b}\theta _\mathrm{f}}-\bigg (\frac{1}{r_\mathrm{f}\theta _\mathrm{f}}+\frac{1}{r_\mathrm{b}\theta _\mathrm{f}}\bigg )\phi _{i,j+1}-\bigg (\frac{1}{r_\mathrm{f}\theta _\mathrm{f}}+\frac{1}{r_\mathrm{f}\theta _\mathrm{b}}\bigg )\phi _{i+1,j} \\&+ \bigg (\frac{1}{r_\mathrm{f}\theta _\mathrm{f}}+\frac{1}{r_\mathrm{f}\theta _\mathrm{b}}+\frac{1}{r_\mathrm{b}\theta _\mathrm{f}}+\frac{1}{r_\mathrm{b}\theta _\mathrm{b}}\bigg )\phi _{i,j}-\bigg (\frac{1}{r_\mathrm{f}\theta _\mathrm{b}}+\frac{1}{r_\mathrm{b}\theta _\mathrm{b}}\bigg )\phi _{i,j-1}\\&-\bigg (\frac{1}{r_\mathrm{b}\theta _\mathrm{f}}+\frac{1}{r_\mathrm{b}\theta _\mathrm{b}}\bigg )\phi _{i-1,j} \nonumber \\&+ \frac{\phi _{i+1,j-1}}{r_\mathrm{f}\theta _\mathrm{b}}+\frac{\phi _{i-1,j-1}}{r_\mathrm{b}\theta _\mathrm{b}}\bigg \rbrace ,\\ \delta _r\delta _\theta \phi _{i,j}= & {} \frac{1}{4\Delta r\Delta \theta }\lbrace \phi _{i+1,j+1}-\phi _{i+1,j-1}-\phi _{i-1,j+1}+\phi _{i-1,j-1} \rbrace . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ray, R.K. Structural bifurcation analysis of vortex shedding from shear flow past circular cylinder. Comp. Appl. Math. 38, 121 (2019). https://doi.org/10.1007/s40314-019-0895-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0895-4

Keywords

Mathematics Subject Classification