An epidemiological model for HIV infection in a population using type-2 fuzzy sets and cellular automaton | Computational and Applied Mathematics Skip to main content

Advertisement

Log in

An epidemiological model for HIV infection in a population using type-2 fuzzy sets and cellular automaton

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Acquired immunodeficiency syndrome (AIDS) is an infectious and contagious disease caused by the human immunodeficiency virus (HIV), which is a global health problem. This study presents a cellular automaton (CA) model of HIV that uses an adaptation of the system of ordinary differential equations proposed by Anderson et al. (J Math Appl Med Biol 3:229–263, 1986) and an interval type-2 fuzzy rule-based system (FRBS). The aim of this study is to show that this CA model is consistent with known statistical results of HIV patients. The novelty of this research is not only the use of CA with a type-2 FRBS to model the HIV in a way that is consistent with the data, its adaptation and improvement of the standard dynamical system model of Anderson et al. (J Math Appl Med Biol 3:229–263, 1986) by adding three phases of viral evolution of the HIV infection in the absence of antiretroviral treatment. One of the features of the CA is its randomness due to the movement of its cells, the infection period in which the individuals are, the places and partners that represent the activity of the HIV population. This feature is efficiently modeled using FRBS with interval type-2 fuzzy sets. The output of our model favorably compares to the data from the period of 1980–1995, when the use of antiretroviral drug was not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Anderson RM, Medley GF, May RM, Johnson A (1986) A preliminary study of the transmission dynamics of the human immunodeficiency virus HIV, the causative agent of AIDS. IMA J Math Appl Med Biol 3:229–263

    Article  MathSciNet  Google Scholar 

  • AVERT (2015) Worldwide HIV & AIDS statistics. http://www.avert.org/worldwide-hiv-aids-statistics.htm. Accessed May 2015

  • Benyoussef A, HafidAllah NE, ElKenz A, Ez-Zahraouy H, Loulidi M (2003) Dynamics of HIV infection on 2D cellular automata. Phys A 322:506–520

    Article  MathSciNet  Google Scholar 

  • Cabrera N (2014) Aplicação da extensão de Zadeh para conjuntos fuzzy do tipo 2 intervalar. Master’s thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil (in Portuguese)

  • Castillo O, Melin P (2008) Type-2 fuzzy logic: theory and applications. Springer, Berlin

    Book  Google Scholar 

  • Coutinho FAB, Lopez L, Burattini M, Massad E (2001) Modelling the natural history of HIV infection in individuals and its epidemiological implications. Bull Math Biol 63:1041–1062

    Article  Google Scholar 

  • Czaran T (1998) Spatiotemporal models of population and community dynamics. Chapman & Hall, Boca Raton

    Google Scholar 

  • Ermentrout G, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160:97–133

    Article  Google Scholar 

  • Golpayegani GN, Jafari AH, Dabanloo NJ (2017) Providing a therapeutic scheduling for HIV infected individuals with genetic algorithms using a cellular automata model of HIV infection in the peripheral blood stream. J Biomed Sci Eng 10:77–106

    Article  Google Scholar 

  • Gomes L, Barros L, Bede B (2015) Fuzzy differential equations in various approaches. Springer Briefs in Mathematics, Berlin

    Book  Google Scholar 

  • Gruttola V, Seage G, Mayer K, Horsburgh C (1989) Infectiousness of HIV between male homosexual partners. J Clin Epidemiol 42(9):849–856

    Article  Google Scholar 

  • Health M (2012) Aspectos clínicos do HIV e boletim epidemiológico AIDS.DST. http://www.aids.gov.br. Accessed 25 May 2012 (in Portuguese)

  • Jafelice RM, Silva CAF, Barros LC, Bassanezi RC (2015) A fuzzy delay approach for HIV dynamics using a cellular automaton. J Appl Math 2015:378753. https://doi.org/10.1155/2015/378753

    Article  MathSciNet  Google Scholar 

  • Jafelice R, Barros L, Bassanezi R, Gomide F (2004) Fuzzy modeling in asymptomatic HIV virus infected population. Bull Math Biol 66:1463–1942

    Article  MathSciNet  Google Scholar 

  • Jafelice RM, Bechara BFZ, Barros LC, Bassanezi RC, Gomide F (2009) Cellular automata with fuzzy parameters in microscopic study of positive HIV individuals. Math Comput Model 50:32–44

    Article  Google Scholar 

  • Jafelice RM, Barros LC, Bassanezi RC (2014) Study of the dynamics of HIV under treatment considering fuzzy delay. Comput Appl Math 33:45–61

    Article  MathSciNet  Google Scholar 

  • Jafelice R, Silva P (2011) Cellular automata—simplicity behind complexity, Intech, chap studies on population dynamics using cellular automata, pp 105–130

  • Karnik N, Mendel J, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658

    Article  Google Scholar 

  • Lee Y, Kouvroukoglou S, McIntire L, Zygourakis K (1995) A cellular automaton model for the proliferation of migrating contact-inhibited cells. Biophys J 69:1284–1298

    Article  Google Scholar 

  • Mendel J (2007) A reprint “type-2 set and systems: an overview”. Suppl IEEE Comput Intell Mag 2(1):20–29

    Article  Google Scholar 

  • Mendel J, Wu H (2007) New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule. Inf Sci 177:360–377

    Article  MathSciNet  Google Scholar 

  • Mendel J, John R, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  • Mendel JM, Rajati MR, Sussner P (2016) On clarifying some definitions and notations used for type-2 fuzzy sets as well as some recommended changes. Inf Sci 340–341:337–345

    Article  MathSciNet  Google Scholar 

  • Mielke A, Pandey R (1998) A computer simulation study of cell population in a fuzzy interaction model for mutating HIV. Phys A 251:430–438

    Article  Google Scholar 

  • Moore EF (1962) Machine models of self-reproduction. In: Proceddings of symposia in applied mathematics, United States of America, vol XIV, pp 17–34

  • Mostafa K, Khalid H, Noura Y (2014) Modeling the adaptive immune response in HIV infection using a cellular automata. Int J Eng Comput Sci 3:5040–5045

    Google Scholar 

  • O’Brien T, Shaffer N, Jaffe H (1995) Transmissão e infecção do vírus HIV. In: Sande M, Volberding P (eds) Tratamento Clínico da AIDS, 3rd edn. Revinter, Rio de Janeiro, pp 3–14 (in Portuguese)

    Google Scholar 

  • Pedrycz W, Gomide F (1998) An introduction to fuzzy sets: analysis and design. MIT, Cambridge

    Book  Google Scholar 

  • Perelson A, Nelson P (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41:3–44

    Article  MathSciNet  Google Scholar 

  • Rachid M, Schechter M (2005) Manual de HIV/AIDS, 8th edn. REVINTER, Rio de Janeiro (in Portuguese)

    Google Scholar 

  • Renning C (1999/2000) Collective behaviour: Emergent dynamics in populations of interacting agents. In: Seminar artificial life

  • Rizol PR, Mesquita L, Saotome O (2011) Lógica fuzzy tipo 2. Revista SODEBRAS 6:27–46

    Google Scholar 

  • Saag M (1995) Diagnóstico laboratorial da AIDS presente e futuro. In: Sande M, Volberding P (eds) Tratamento Clínico da AIDS, 3rd edn. Revinter, Rio de janeiro, pp 27–43 (in Portuguese)

    Google Scholar 

  • Santos R, Coutinho S (2001) Dynamics of HIV infection: a cellular automata approach. Phys Rev Lett 87(16):1681021–1681024

    Google Scholar 

  • Silva C, Jafelice R (2010) Uso de autômato celular em tratamento dos HIV positivos dependendo da evolução da doença. In: \(18^{\circ }\) SIICUSP, São Paulo, Brazil (in Portuguese)

  • Sloot P, Chen F, Boucher C (2002) Cellular automata model of drug therapy for HIV infection. In: Lecture notes in computer science, pp 282–293

  • UNAIDS (2013) http://www.unaids.org. Accessed Oct 2014 (in Portuguese)

  • Wolfram S (1994) Cellular automata and complexity. Addison-Wesley publishing Company, New York

    MATH  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges to the Brazilian Research Agency CAPES for the scholarship process number 88881.119095/2016-01. The fourth author acknowledges CNPq, the Brazilian National Research Council, for its financial support (process 305862/2013-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Jafelice.

Additional information

Communicated by Eduardo Souza de Cursi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafelice, R.M., Pereira, B.L., Bertone, A.M.A. et al. An epidemiological model for HIV infection in a population using type-2 fuzzy sets and cellular automaton . Comp. Appl. Math. 38, 141 (2019). https://doi.org/10.1007/s40314-019-0867-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0867-8

Keywords

Mathematics Subject Classification

Navigation