Abstract
This work proposes a new approach to the well-known method bat algorithm for solving the mobile robots global localization problem. The proposed method is leader-based bat algorithm (LBBA). The LBBA uses a small number of better micro-bats as leaders to influence the colony in the search for the best position, dealing satisfactorily with ambiguities during the localization process. The tests covered different scenarios aiming at comparing the proposed algorithm with other methods, such as the standard BA, the particle swarm optimization and particle filter. The results outperformed the compared methods, presenting a fast response and errors below the intended tolerance. The algorithm was tested in the robot kidnapping scenario and shows fast recovery in both simulation and in a real environment. In addition, the proposed technique showed 21% lower average error when compared with an algorithm that presents a variable quantity of particles, i.e. the adaptive Monte Carlo localization algorithm.















Similar content being viewed by others
References
Brossard, M., Bonnabel, S., & Condomines, J.P. (2017). Unscented Kalman filtering on lie groups. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE (pp. 2485–2491).
Costa, P. J., Moreira, N., Campos, D., Gonalves, J., Lima, J., & Costa, P. L. (2016). Localization and navigation of an omnidirectional mobile robot: The robot@factory case study. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 11(1), 1–9. https://doi.org/10.1109/RITA.2016.2518420.
de Sanguino, J. M. T., & Gómez, F. P. (2016). Toward simple strategy for optimal tracking and localization of robots with adaptive particle filtering. IEEE/ASME Transactions on Mechatronics, 21(6), 2793–2804. https://doi.org/10.1109/TMECH.2016.2531629.
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernectics—Part B, 26(1), 29–41.
Eberhart, & Shi, Y. (2001). Particle swarm optimization: Developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No.01TH8546) (Vol. 1, pp. 81–86). https://doi.org/10.1109/CEC.2001.934374.
Furtado, L., Neto, W.A., Menezes, A., da Silva Junior, I.C., Olivi, L.R., & Marcato, A.L.M. (2013). Bat search algorithm aplicado na localização de robôs móveis (in portuguese). In: Proceedings of the 12th Braziliam symposium on intelligent automation (SBAI) 2015 (pp. 1248–1253). Natal.
Gandomi, A.H., & Yang, X. S. (2014). Chaotic bat algorithm. Journal of Computational Science, 5(2), 224–232. https://doi.org/10.1016/j.jocs.2013.10.002. http://www.sciencedirect.com/science/article/pii/S1877750313001099. Empowering Science through Computing + BioInspired Computing.
Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: Charged system search. Acta Mechanica, 213(3), 267–289. https://doi.org/10.1007/s00707-009-0270-4.
Kostiv, O., Demydov, I., Makarenko, A., & Tverdohlib, M. (2018). Metaheuristics in cloud platform traffic engineering. In: 2018 14th International conference on advanced trends in radioelecrtronics, telecommunications and computer engineering (TCSET) (pp. 533–537). https://doi.org/10.1109/TCSET.2018.8336258.
Lee, Y.C., Park, B., & Park, S. (2014) Coarse-to-fine robot localization method using radio fingerprint and Particle Filter. In: Proceedings of the IEEE international conference on automation science and engineering (CASE) 2014 (pp. 290–296). Gothenburg.
Meng, X. B., Gao, X. Z., Liu, Y., & Zhang, H. (2015). A novel bat algorithm with habitat selection and doppler effect in echoes for optimization. Expert Systems with Applications, 42(17), 6350–6364. https://doi.org/10.1016/j.eswa.2015.04.026.
Mirjalili, S., Mirjalili, S. M., & Yang, X. S. (2014). Binary bat algorithm. Neural Computing and Applications, 25(3), 663–681. https://doi.org/10.1007/s00521-013-1525-5.
Mohd Nawi, N., Rehman Gillani, S. M., Khan, A., Chiroma, H., & Herawan, T. (2015). A modified bat algorithm based on Gaussian distribution for solving optimization problem. Journal of Computational and Theoretical Nanoscience, 13, 706–714.
Motonaka, K., Maeyama, S., & Watanabe, K. (2013). Path planning and a mobile robot navigation method based on a human frequency map. Journal of Control, Automation and Electrical Systems, 24(1), 87–96.
Nguyen, T. T., Pan, J. S., Dao, T. K., Kuo, M. Y., & Horng, M. F. (2014). Hybrid bat algorithm with artificial bee colony. In J. S. Pan, V. Snasel, E. S. Corchado, A. Abraham, & S. L. Wang (Eds.), Intelligent data analysis and its applications (Vol. II, pp. 45–55). Cham: Springer.
Pears, N. E. (2001). Mobile robot tracking of pre-planned paths. Advanced Robotics, 15(1), 97–107. https://doi.org/10.1163/156855301750095596.
Seow, Y., Miyagusuku, R., Yamashita, A., & Asama, H. (2017). Detecting and solving the kidnapped robot problem using laser range finder and wifi signal. In: 2017 IEEE international conference on real-time computing and robotics (RCAR) (pp. 303–308). https://doi.org/10.1109/RCAR.2017.8311878.
Suárez, P., & Iglesias, A. (2017). Bat algorithm for coordinated exploration in swarm robotics. In J. Del Ser (Ed.), Harmony search algorithm (pp. 134–144). Singapore: Springer.
Thrun, S. (2002). Probabilistic robotics. Communications of the ACM—Robots: Intelligence, Versatility, Adaptivity, 45(3), 52–57. https://doi.org/10.1145/504729.504754.
Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge: MIT press.
Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–141.
Wang, X., Wang, W., & Wang, Y. (2013). An adaptive bat algorithm. In D. S. Huang, K. H. Jo, Y. Q. Zhou, & K. Han (Eds.), Intelligent computing theories and technology (pp. 216–223). Berlin: Springer.
Woo, J., Kim, Y.J., on Lee, J., & Lim, M.T. (2006). Localization of mobile robot using Particle Filter. In: Proceedings of the IEEE international joint conference SICE-ICASE 2006 (pp. 3031–3034). Busan.
Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. Chap. 6. In J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, & N. Krasnogor (Eds.), Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (Vol. 284, pp. 65–74)., Studies in Computational Intelligence (SCI) Berlin: Springer. https://doi.org/10.1007/978-3-642-12538-6_6.
Yang, X., & Gandomi, A. H. (2012). Bat algorithm: A novel approach for global engineering optimization. Engineering Computations, 29(5), 464–483. https://doi.org/10.1108/02644401211235834.
Ylmaz, S., Kucuksille, E. U., & Cengiz, Y. (2014). Modified bat algorithm. Elektronika ir Elektrotechnika, 20, 71–78.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Neto, W.A., Pinto, M.F., Marcato, A.L.M. et al. Mobile Robot Localization Based on the Novel Leader-Based Bat Algorithm. J Control Autom Electr Syst 30, 337–346 (2019). https://doi.org/10.1007/s40313-019-00453-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40313-019-00453-2