Tamper-Resistant Secure Medical Image Carrier: An IWT–SVD–Chaos–FPGA Combination | Arabian Journal for Science and Engineering Skip to main content

Advertisement

Log in

Tamper-Resistant Secure Medical Image Carrier: An IWT–SVD–Chaos–FPGA Combination

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Medical images are widely used for diagnostic and therapeutic purposes during the detection of abnormalities in various organs of the human body. A huge number of medical images are handled every day by the hospitals as well as medical practitioners. Medical images need a strong mechanism for rightful patient identification and confidential sharing. The proposed work addresses both these issues through watermarking, encryption and hardware storage. In the proposed work, the important credentials of the patient such as their treatment history, ID and thumb impression are integrated in the form of a 256 × 256 watermark image. This watermark is embedded into the DICOM image of size 512 × 512 using Singular Value Decomposition on Integer Wavelet Transform domain. The watermarked DICOM image was further encrypted using Tent map and Lü chaotic attractors. Further, Stratix FPGA has been used to carry the bitstream format of encrypted images. The extracted watermark achieves a PSNR of 30 dB after subjecting to 17 different noise and image processing attacks on the encrypted image. For a payload of 0.25, the normal cross-correlation reached is 0.99. Keyspace of the encrypted DICOM image is 10136 achieving an average entropy of 15.68 and near-zero correlation. The proposed solution also overcomes the False Positive Problem. Various error metrics and statistical analyses have been performed to validate the robustness of the proposed secure medical image carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mousavi, S.M.; Naghsh, A.; Abu-Bakar, S.A.R.: Watermarking techniques used in medical images: a survey. J. Digit. Imaging (2014). https://doi.org/10.1007/s10278-014-9700-5

    Google Scholar 

  2. Singh, S.P.; Bhatnagar, G.: A new robust watermarking system in integer DCT domain. J. Vis. Commun. Image Represent. (2018). https://doi.org/10.1016/j.jvcir.2018.03.006

    Google Scholar 

  3. Patra, J.C.; Phua, J.E.; Bornand, C.: A novel DCT domain CRT-based watermarking scheme for image authentication surviving JPEG compression. Digit. Signal Process. (2010). https://doi.org/10.1016/j.dsp.2010.03.010

    Google Scholar 

  4. Arora, S.M.: A DWT-SVD based robust digital watermarking for digital images. Procedia Comput. Sci. (2018). https://doi.org/10.1016/j.procs.2018.05.076

    Google Scholar 

  5. Makbol, N.M.; Khoo, B.E.: A new robust and secure digital image watermarking scheme based on the integer wavelet transform and singular value decomposition. Digit. Signal Process. (2014). https://doi.org/10.1016/j.dsp.2014.06.012

    Google Scholar 

  6. Selvam, P.; Balachandran, S.; Pitchai Iyer, S.; Jayabal, R.: Hybrid transform based reversible watermarking technique for medical images in telemedicine applications. Optik (2017). https://doi.org/10.1016/j.ijleo.2017.07.060

    Google Scholar 

  7. Makbol, N.M.; Khoo, B.E.: Robust blind image watermarking scheme based on redundant discrete wavelet transform and singular value decomposition. AEU Int. J. Electron. Commun. (2013). https://doi.org/10.1016/j.aeue.2012.06.008

    Google Scholar 

  8. Gangadhar, Y.; Giridhar Akula, V.S.; Reddy, P.C.: An evolutionary programming approach for securing medical images using watermarking scheme in invariant discrete wavelet transformation. Biomed. Signal Process. Control (2018). https://doi.org/10.1016/j.bspc.2018.02.007-&gt

    Google Scholar 

  9. Tao, H.; Chongmin, L.; Zain, J.M.; Abdalla, A.N.: Robust image watermarking theories and techniques: a review. Appl. Res. Technol. (2014). https://doi.org/10.1016/S1665-6423(14)71612-8

    Google Scholar 

  10. Najafi, E.; Loukhaoukha, K.: Hybrid secure and robust image watermarking scheme based on SVD and sharp frequency localized contourlet transform. J. Inf. Secur. Appl. (2019). https://doi.org/10.1016/j.procs.2018.05.076

    Google Scholar 

  11. Koohpayeh, T.; Abd, A.; Kohpayeh, S.: A secure blind discrete wavelet transform based watermarking scheme using two-level singular value decomposition. Expert Syst. Appl. (2018). https://doi.org/10.1016/j.eswa.2018.06.024

    Google Scholar 

  12. Ansari, I.A.; Pant, M.: Multipurpose image watermarking in the domain of DWT based on SVD and ABC. Pattern Recognit. Lett. 94, 228–236 (2017). https://doi.org/10.1016/j.patrec.2016.12.010

    Article  Google Scholar 

  13. Liu, Y.; Tang, S.; Liu, R.; Zhang, L.; Ma, Z.: Secure and robust digital image watermarking scheme using logistic and RSA encryption. Expert Syst. Appl. (2018). https://doi.org/10.1016/j.eswa.2017.12.003

    Google Scholar 

  14. Makbol, N.M.; Khoo, B.E.; Rassem, T.H.; Loukhaoukha, K.: A new reliable optimized image watermarking scheme based on the integer wavelet transform and singular value decomposition for copyright protection. Inf. Sci. (2017). https://doi.org/10.1016/j.dsp.2014.06.012

    Google Scholar 

  15. Singh, D.; Singh, S.K.: DWT-SVD and DCT based robust and blind watermarking scheme for copyright protection. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-016-3706-6

    Google Scholar 

  16. Fazli, S.; Moeini, M.: A robust image watermarking method based on DWT, DCT, and SVD using a new technique for correction of main geometric attacks. Optik (2016). https://doi.org/10.1016/j.ijleo.2015.09.205

    Google Scholar 

  17. Guo, J.M.; Prasetyo, H.: False-positive-free SVD-based image watermarking. J. Vis. Commun. Image Represent. (2014). https://doi.org/10.1016/j.jvcir.2014.03.012

    Google Scholar 

  18. Ganic, E.; Eskicioglu, A.M.: Robust embedding of visual watermarks using discrete wavelet transform and singular value decomposition. Electron. Imaging (2005). https://doi.org/10.1117/1.2137650

    Google Scholar 

  19. Ganic, E.; Eskicioglu, A.M.: Robust DWT-SVD domain image watermarking. In: Proceedings of the 2004 Multimedia Security Work (2004). https://doi.org/10.1145/1022431.1022461

  20. Qasim, A.F.; Meziane, F.; Aspin, R.: Digital watermarking: applicability for developing trust in medical imaging workflows state of the art review. Comput. Sci. (2018). https://doi.org/10.1016/j.cosrev.2017.11.003

    MATH  Google Scholar 

  21. Cho, Y.; Ahn, B.; Kim, J.S.; Kim, I.Y.; Kim, S.I.: A study for watermark methods appropriate to medical images. J. Digit. Imaging (2001). https://doi.org/10.1007/BF03190332

    Google Scholar 

  22. Mehta, S.; Nallusamy, R.; Marawar, R.V.; Prabhakaran, B.: A study of DWT and SVD based watermarking algorithms for patient privacy in medical images. In: Proceedings of the 2013 IEEE International Conference on Healthcare Informatics (2013). https://doi.org/10.1109/ICHI.2013.41

  23. Ayad, H.; Khalil, M.: A semi-blind information hiding technique using DWT-SVD and QAM-16 for medical images. In: Proceedings of the 2nd International Conference on Big Data, Cloud Applications (2017). https://doi.org/10.1145/3090354.3090433

  24. Giakoumaki, A.; Pavlopoulos, S.; Koutsouris, D.: Secure and efficient health data management through multiple watermarking on medical images. Med. Biol. Eng. Comput. (2006). https://doi.org/10.1007/s11517-006-0081-x

    Google Scholar 

  25. Sharifzadeh, F.; Akbarizadeh, G.: Ship classification in SAR images using a new hybrid CNN–MLP classifier. J. Indian Soc. Remote Sens. (2018). https://doi.org/10.1007/s12524-018-0891-y

    Google Scholar 

  26. Akbarizadeh, G.; Rangzan, K.; Kabolizadeh, M.: Effective supervised multiple-feature learning for fused radar and optical data classification. IET Radar Sonar Navig. (2017). https://doi.org/10.1049/iet-rsn.2016.0346

    Google Scholar 

  27. Akbarizadeh, G.; Moghaddam, A.E.: Detection of lung nodules in CT scans based on unsupervised feature learning and fuzzy inference. J. Med. Imaging Heal. Inform. (2016). https://doi.org/10.1166/jmihi.2016.1720

    Google Scholar 

  28. Modava, M.; Akbarizadeh, G.; Soroosh, M.: Integration of spectral histogram and level set for coastline detection in SAR images. IEEE Trans. Aerosp. Electron. Syst. (2018). https://doi.org/10.1109/TAES.2018.2865120

    Google Scholar 

  29. Raeisi, A.; Akbarizadeh, G.; Mahmoudi, A.: Combined method of an efficient cuckoo search algorithm and nonnegative matrix factorization of different zernike moment features for discrimination between oil spills and lookalikes in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (2018). https://doi.org/10.1109/JSTARS.2018.2841503

    Google Scholar 

  30. Akbarizadeh, G.: A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images. IEEE Trans. Geosci. Remote Sens. (2012). https://doi.org/10.1109/TGRS.2012.2194787

    Google Scholar 

  31. Farbod, M.; Akbarizadeh, G.; Kosarian, A.; Rangzan, K.: Optimized fuzzy cellular automata for synthetic aperture radar image edge detection. J. Electron. Imaging (2018). https://doi.org/10.1117/1.JEI.27.1.013030

    Google Scholar 

  32. Shehab, A.; et al.: Secure and robust fragile watermarking scheme for medical images. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2799240

    Google Scholar 

  33. Thakkar, F.N.; Srivastava, V.K.: A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-016-3928-7

    Google Scholar 

  34. Venugopal Reddy, C.H.; Siddaiah, P.: Medical image watermarking schemes against salt and pepper noise attack. Int. J. Bio-Sci. Bio-Technol. (2015). https://doi.org/10.14257/ijbsbt.2015.7.6.07

    Google Scholar 

  35. Daubechies, I.; Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. (1998). https://doi.org/10.1007/BF02476026

    MathSciNet  MATH  Google Scholar 

  36. Roy, S.; Pal, A.K.: An SVD based location specific robust color image watermarking scheme using RDWT and Arnold scrambling. Wirel. Pers. Commun. (2018). https://doi.org/10.1007/s11277-017-4971-z

    Google Scholar 

  37. Rajagopalan, S.; Rethinam, S.; Arumugham, S.; Upadhyay, H.N.; Rayappan, J.B.B.; Amirtharajan, R.: Networked hardware assisted key image and chaotic attractors for secure RGB image communication. Multimed. Tools Appl. (2018). https://doi.org/10.1007/s11042-017-5566-0

    Google Scholar 

  38. Mondal, B.; Singh, S.; Kumar, P.: A secure image encryption scheme based on cellular automata and chaotic skew tent map. J. Inf. Secur. Appl. (2019). https://doi.org/10.1016/j.jisa.2019.01.010

    Google Scholar 

  39. Lakshmi, C.; Thenmozhi, K.; Rayappan, J.B.B.; Amirtharajan, R.: Encryption and watermark-treated medical image against hacking disease—an immune convention in spatial and frequency domains. Comput. Methods Programs Biomed. 1, 2 (2018). https://doi.org/10.1016/j.cmpb.2018.02.021

    Google Scholar 

  40. Arumugham, S.; Rajagopalan, S.; Rayappan, J.B.B.; Amirtharajan, R.: Networked medical data sharing on secure medium-a web publishing mode for DICOM viewer with three-layer authentication. J. Biomed. Inform. 1, 2 (2018). https://doi.org/10.1016/j.jbi.2018.08.010

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank SASTRA Deemed University for providing infrastructure through the Research & Modernization Fund (Ref. No: R&M/0026/SEEE – 010/2012 – 13) to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundararaman Rajagopalan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugham, S., Rajagopalan, S., Rayappan, J.B.B. et al. Tamper-Resistant Secure Medical Image Carrier: An IWT–SVD–Chaos–FPGA Combination. Arab J Sci Eng 44, 9561–9580 (2019). https://doi.org/10.1007/s13369-019-03883-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03883-x

Keywords

Navigation