Successes and challenges of Arabic sentiment analysis research: a literature review | Social Network Analysis and Mining Skip to main content
Log in

Successes and challenges of Arabic sentiment analysis research: a literature review

  • Review Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

The analysis of sentiment in text has mainly been focused on the English language. The complexity of the Arabic language and its linguistic features that oppose those found in English resulted in the inability to adapt extant research to Arabic contexts limiting advancement in Arabic sentiment analysis. The need for Arabic sentiment analysis research is accentuated by the driving changes in different Arab regions like heavy political movements in some areas and fast growth in others. These changes help shape not just policies and implications of this region but affect the entire world on a global scale. Therefore, it is essential to utilise effective methods of sentiment analysis to analyse Arabic tweets to understand regional and global implications in microblogging mediums such as Twitter. In this paper, we conduct a comprehensive review of Arabic sentiment analysis, present the pros and cons of the different approaches used and highlight the challenges of it. Finally, we outline the relevant gaps in the literature and suggest recommendations for future Arabic sentiment analysis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi A, Chen H, Salem A (2008) Sentiment analysis in multiple languages: feature selection for opinion classification in Web forums. ACM Trans Inf Syst (TOIS) 26(3):12

    Article  Google Scholar 

  • Abdulla NA, Al-Ayyoub M, Al-Kabi MN (2014) Int J Big Data Intell 1(1–2):103

    Article  Google Scholar 

  • Abdulla NA, Ahmed NA, Shehab MA, Al-Ayyoub M, Al-Kabi MN, Al-rifai S (2014) Towards improving the lexicon-based approach for Arabic sentiment analysis. Int J Inf Technol Web Eng 9(3):55

    Article  Google Scholar 

  • Abdul-Mageed M, Diab M, Kübler S (2014) SAMAR: subjectivity and sentiment analysis for Arabic social media. Comput Speech Lang 28(1):20

    Article  Google Scholar 

  • Abuaiadh D (2011) Dataset for Arabic document classification. http://diab.edublogs.org/dataset-for-arabic-document-classification

  • Adel Assiri AE, Aldossari H (2015) Int J Adv Comput Sci Appl. https://doi.org/10.14569/ijacsa.2015.061211

    Google Scholar 

  • Agarwal A, Xie B, Vovsha I, Rambow O, Passonneau R (2011) In: Proceedings of the workshop on languages in social media. Association for Computational Linguistics, Stroudsburg, pp 30–38

  • Ain QT, Ali M, Riaz A, Noureen A, Kamran M, Hayat B, Rehman A (2017) Sentiment analysis using deep learning techniques: a review. Int J Adv Comput Sci Appl 8(6):424

    Google Scholar 

  • Al Sallab AA, Baly R, Badaro G, Hajj H, El Hajj W, Shaban KB (2015) In: ANLP workshop, vol 9

  • Alayba AM, Palade V, England M, Iqbal (2017) arXiv preprint arXiv:1702.03197

  • Al-Ayyoub M, Essa SB, Alsmadi I (2015) Lexicon-based sentiment analysis of Arabic tweets. Int J Soc Netw Min 2(2):101

    Article  Google Scholar 

  • Al-Kabi M, Gigieh A, Alsmadi I, Wahsheh H, Haidar M (2013) In: The fourth international conference on information and communication systems (ICICS 2013), pp 23–25

  • Al-Sabbagh R, Girju R (2012) In: Proceedings of the eight international conference on language resources and evaluation (LREC’12), Istanbul, Turkey. European Language Resources Association (ELRA), pp 2882–2889

  • Al-Subaihin AA, Al-Khalifa HS, Al-Salman AS (2011) In: Proceedings of the 13th international conference on information integration and web-based applications and services. ACM, pp 543–546

  • Altrabsheh N, Gaber M, Cocea M (2013) SA-E: sentiment analysis for education. Int Conf Intell Decis Technol 255:353

    Google Scholar 

  • Altrabsheh N, Cocea M, Fallahkhair S (2014) In: Adaptive and intelligent systems. Springer, New York, pp 40–49

  • Altrabsheh N, Cocea M, Fallahkhair S (2015) Tenth European conference on technology enhanced learning

  • Altrabsheh N, El-Masri M, Mansour H (2017) In: American conference information systems

  • Al-Twairesh N, Al-Khalifa H, Al-Salman A (2014) In: 2014 IEEE/ACS 11th international conference on computer systems and applications (AICCSA), IEEE, pp 148–155

  • Arabic speaking internet users and population statistics (2015). http://www.internetworldstats.com/stats19.htm

  • Asur S, Huberman B et al. (2010) In: Web intelligence and intelligent agent technology, IEEE, vol. 1, pp 492–499

  • Barbosa L, Feng J (2010) Robust sentiment detection on Twitter from biased and noisy data. Int Conf Comput Linguist 23:36

    Google Scholar 

  • Chamlertwat W, Bhattarakosol P, Rungkasiri T, Haruechaiyasak C (2012) Discovering consumer insight from Twitter via sentiment analysis. J Univers Comput Sci 18(8):973

    Google Scholar 

  • Claster W, Cooper M, Sallis P (2010) In: Computational intelligence, modelling and simulation second international conference (CIMSiM), pp 89–94. https://doi.org/10.1109/CIMSiM.2010.98

  • Darwish K, Magdy W, Mourad A (2012) In: Proceedings of the 21st ACM international conference on information and knowledge management. ACM, pp 2427–2430

  • Deng L, Yu D et al (2014) Foundations and trends®. Sig Process 7(3–4):197

    Google Scholar 

  • Duwairi RM, Alfaqeh M, Wardat M, Alrabadi A (2016) In: 7th International conference on information and communication systems (ICICS), IEEE, pp 127–132

  • Duwairi RM (2015) In: Information and communication systems (ICICS), 2015 6th international conference on IEEE, pp 166–170

  • Duwairi RM (2007) Arabic text categorization. Int Arab J Inf Technol 4(2):125

    Google Scholar 

  • Duwairi R, El-Orfali M (2014) A study of the effects of preprocessing strategies on sentiment analysis for Arabic text. J Inf Sci 40(4):501

    Article  Google Scholar 

  • Duwairi R, Marji R, Sha’ban N, Rushaidat S (2014) In: Information and communication systems (ICICS), 2014 5th international conference on IEEE, pp 1–6

  • El-Beltagy SR, Ali A (2013) In: Innovations in information technology (IIT), 2013 9th international conference on IEEE, pp 215–220

  • El-Halees A (2012) In: The 13th international Arab conference on information technology ACIT, pp 265–271

  • El-Halees A et al (2011) Arabic opinion mining using combined classification approach

  • Elhawary M, Elfeky M (2010) In 2010 IEEE international conference on data mining workshops, IEEE, pp 1108–1113

  • El-Makky N, Nagi K, El-Ebshihy A, Apady E, Hafez O, Mostafa S, Ibrahim S (2015) The 3rd ASE international conference on social informatics (SocialInformatics 2014), At Harvard University, Cambridge, MA, USA

  • ElSahar H, El-Beltagy SR (2014) In: CICLing, vol 1, pp 79–91

  • Fei Z, Liu J, Wu G (2004) In: Computer and information technology, 2004. CIT’04. The fourth international conference on IEEE, pp 1147–1152

  • Gamon M, Aue A, Corston-Oliver S, Ringger E (2005) Pulse: mining customer opinions from free text. Int Conf Adv Intell 6:121

    MATH  Google Scholar 

  • Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford. http://s3.eddieoz.com/docs/sentiment_analysis/Twitter_Sentiment_Classification_using_Distant_Supervision.pdf

  • Go A, Huang L, Bhayani R (2009) Twitter sentiment analysis. CS224N Project Report, Stanford. http://www-nlp.stanford.edu/courses/cs224n/2009/fp/3.pdf

  • Habash N, Rambow O, Roth R (2009) In: Proceedings of the 2nd international conference on Arabic language resources and tools (MEDAR), Cairo, Egypt, pp 102–109

  • Hammad ASA (2013) An approach for detecting spam in Arabic opinion reviews. Ph.D. thesis, Islamic University of Gaza

  • Hill S, Nalavade A, Benton A (2012) In Proceedings of the sixth international workshop on data mining for online advertising and internet economy. ACM, vol 12, pp 4–12

  • Ibrahim HS, Abdou SM, Gheith M (2015) arXiv preprint arXiv:1505.03105

  • Jansen BJ, Zhang M, Sobel K, Chowdury A (2009) Twitter power: Tweets as electronic word of mouth. J Am Soc Inf Sci Technol 60(11):2169

    Article  Google Scholar 

  • Korayem M, Crandall D, Abdul-Mageed M (2012) In: International conference on advanced machine learning technologies and applications. Springer, New York, pp 128–139

  • Kumar A, Sebastian TM (2012) Machine learning assisted sentiment analysis. Int Conf Comput Sci Eng 12(13):123

    Google Scholar 

  • Lu B, Tsou BK (2010) In: machine learning and cybernetics (ICMLC), 2010 international conference on IEEE, vol 6, pp 3311–3316

  • Mahyoub FH, Siddiqui MA, Dahab MY (2014) Building an Arabic sentiment lexicon using semi-supervised learning. J King Saud Univ Comput Inf Sci 26(4):417

    Google Scholar 

  • Mohamed E, Kübler S (2010) In: Language resources and evaluation

  • Mohammad SM, Salameh M, Kiritchenko S (2015) How translation alters sentiment. J Artif Intell Res 1:1

    Google Scholar 

  • Mountassir A, Benbrahim H, Berrada I (2012) 3 e Séminaire de Veille Stratégique, Scientifique et Technologique (VSST’12)

  • Mouthami K, Devi K, Bhaskaran V (2013) Sentiment analysis and classification based on textual reviews. Inf Commun Embed Syst (ICICES) 1:271

    Google Scholar 

  • Oraby S, El-Sonbaty Y, El-Nasr MA (2013) In: International joint conference on natural language processing, pp 471–479

  • Ortigosa A, Martin JM, Carro RM (2014) Sentiment analysis in Facebook and its application to e-learning. Comput Hum Behav 31:527

    Article  Google Scholar 

  • Pak A, Paroubek P (2010) Twitter based system: using Twitter for disambiguating sentiment ambiguous adjectives. Int Workshop Semant Eval 5:436

    Google Scholar 

  • Pak A, Paroubek P (2011) In: 2011 22nd international workshop on database and expert systems applications, IEEE, pp 111–115

  • Pang B, Lee L, Vaithyanathan S (2002) ACL-02 conference on empirical methods in natural language processing, vol 10, pp 79

  • Prasad S (2010) Micro-blogging sentiment analysis using bayesian classification methods. CS224N Project Report, Stanford. http://nlp.stanford.edu/courses/cs224n/2010/reports/suhaasp.pdf

  • Refaee E, Rieser V (2014) In: Language resources and evaluation, pp 2268–2273

  • Refaee E, Rieser V (2014) In: Proceedings of the workshop on free/open-source Arabic corpora and corpora processing tools, p 16

  • Rushdi-Saleh M, Martín-Valdivia MT, Ure na-López LA, Perea-Ortega JM (2011) OCA: opinion corpus for Arabic. J Am Soc Inform Sci Technol 62(10):2045

    Article  Google Scholar 

  • Saif H, He Y, Alani H (2012) In: International semantic web conference. Springer, New York, pp 508–524

  • Shoukry A, Rafea A (2012) In: Collaboration technologies and systems (CTS), 2012 international conference on IEEE, pp 546–550

  • Singhal P, Bhattacharyya P (2016) Sentiment analysis and deep learning: a survey. http://www.cfilt.iitb.ac.in/resources/surveys/sentiment-deeplearning-2016-prerna.pdf

  • Soliman TH, Elmasry M, Hedar A, Doss M (2014) Sentiment analysis of Arabic slang comments on facebook. Int J Comput Technol 12(5):3470

    Google Scholar 

  • Stone PJ, Dunphy DC, Smith MS (1966)

  • Thelwall M (2013) In: Proceedings of the CyberEmotions, pp 1–14

  • Tian F, Zheng Q, Zhao R, Chen T, Jia X (2009) Can e-Learner’s emotion be recognized from interactive Chinese texts? Int Conf Comput Support Cooperative Work Des 13:546

    Google Scholar 

  • Vohra MS, Teraiya J (2013) Applications and challenges for sentiment analysis: a survey. Int J Eng 2(2):1

    Google Scholar 

  • Wahsheh HA, Al-Kabi MN, Alsmadi IM (2013) In: Applied electrical engineering and computing technologies (AEECT), 2013 IEEE Jordan conference on IEEE, pp 1–6

  • Wang W, Wu J (2011) Emotion recognition based on CSO&SVM in e-learning. Int Conf Nat Comput 7:566

    Google Scholar 

  • Wang W, Chen L, Thirunarayan K, Sheth AP (2012) Harnessing twitter “big data” for automatic emotion identification. Int Conf Soc Comput (SocialCom) 4:587

    Google Scholar 

  • Whitelaw C, Garg N, Argamon S (2005) In: Proceedings of the 14th ACM international conference on information and knowledge management. ACM, pp 625–631

  • Yassine M, Hajj H (2010) In: Data mining workshops (ICDMW), 2010 IEEE international conference on IEEE, pp 1136–1142

  • Yessenov K, Misailovic S (2009) Methodology, pp 1–17

  • Yoshida Y, Hirao T, Iwata T, Nagata M, Matsumoto Y (2011) Transfer learning for multiple-domain sentiment analysis-identifying domain dependent/independent word polarity. AAAI Conf Artif Intell 25:1286

    Google Scholar 

  • Zaidan OF, Callison-Burch C (2011) In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies: short papers, vol 2 Association for Computational Linguistics, pp 37–41

  • Zeroual I, Lakhouaja A, Belahbib R (2017) Towards a standard part of speech tagset for the Arabic language. J King Saud Univ Comput Inf Sci 29(2):171

    Google Scholar 

  • Zhang L, Ghosh R, Dekhil M, Hsu M, Liu B (2011) Combining lexicon-based and learning-based methods for twitter sentiment analysis. Technical Reports. http://www.hpl.hp.com/techreports/2011/HPL-2011-89.html

  • Zhao S, Zhong L, Wickramasuriya J, Vasudevan V (2011) Analyzing Twitter for social tv: sentiment extraction for sports. Int Workshop Future Telev 2:11

    Google Scholar 

Download references

Acknowledgements

This publication was made possible by the NPRP award [NPRP 7-1334-6-039 PR3] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the author[s].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeela Altrabsheh.

Additional information

This publication was made possible by the NPRP award [NPRP 7-1334-6-039 PR3] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the author[s].

Appendix: Literature summarisation

Appendix: Literature summarisation

See Table 5.

Table 5 Literature summarisation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Masri, M., Altrabsheh, N. & Mansour, H. Successes and challenges of Arabic sentiment analysis research: a literature review. Soc. Netw. Anal. Min. 7, 54 (2017). https://doi.org/10.1007/s13278-017-0474-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-017-0474-x

Keywords