Abstract
In this article, we describe technologies facilitating the set-up of automated assembly solutions which have been developed in the context of the IntellAct project (2011–2014). Tedious procedures are currently still required to establish such robot solutions. This hinders especially the automation of so called few-of-a-kind production. Therefore, most production of this kind is done manually and thus often performed in low-wage countries. In the IntellAct project, we have developed a set of methods which facilitate the set-up of a complex automatic assembly process, and here we present our work on tele-operation, dexterous grasping, pose estimation and learning of control strategies. The prototype developed in IntellAct is at a TRL4 (corresponding to ‘demonstration in lab environment’).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The Technical Readiness Level indicates the maturity of evolving technologies. It ranges from TRL 1 (basic technology research) to TRL 9 (system operating successfully under normal working conditions).
References
Collins K, Palmer AJ, Rathmill K (1985) The development of a European benchmark for the comparison of assembly robot programming systems. In: Robot technology and applications (Robotics Europe Conference), pp 187–199
Yang Y, Lin L, Song Y, Nemec B, Ude A, Rytz JA, Buch AG, Krüger N, Savarimuthu TR (2014) Programming of peg-in-hole actions by human demonstration. In: Proceedings of the 2014 Internation Conference on Mechatronics and Control
Ijspeert AJ, Nakanishi J, Hoffmann H, Pastor P, Schaal S (2013) Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput 25(2):328–373
Marhenke I, Fischer K, Savarimuthu TR (2014) Teleoperation for learning by demonstration: data glove versus object manipulation for intuitive robot control. In: Proceedings of the HRI’14 467 conference, late breaking results, Bielefeld, Germany, pp 242–243
Campbell C, Peters R II, Bodenheimer R, Bluethmann W, Huber E, Ambrose R (2006) Superpositioning of behaviors learned through teleoperation. IEEE Trans Robotics 22(1):79–91
Kirstein F, Fischer K, Solvason D (2014) Human embodiment creates problems for robot learning by demonstration using a control panel. In: Proceedings of the HRI’14 Conference, Late Breaking Results, Bielefeld, Germany, pp 212–213
aus der Wieschen M, Fischer K, Kuklinsky K (2014) Intuitive error resolution strategies during robot demonstration. In: Proceedings of the HRI’14 Conference, Late Breaking Results, Bielefeld, Germany, pp 120–121
Marhenke I, Fischer K, Savarimuthu TR (2014) Reasons for singularity in robot teleoperation. In: Proceedings of the HRI’14 Conference, Late Breaking Results, Bielefeld, Germany, pp 242–243
Savarimuthu T, Liljekrans D, Ellekilde LP, Ude AA, Nemec B, Krüger N (2013) Analysis of human peg-in-hole executions in a robotic embodiment using uncertain grasps. In: 9th International Workshop on Robot Motion and Control, RoMoCo
Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338
Bronstein A, Bronstein M, Castellani U, Falcidieno B, Fusiello A, Godil A, Guibas L, Kokkinos I, Lian Z, Ovsjanikov M et al (2010) Shrec 2010: robust large-scale shape retrieval benchmark. In: Proceedings of the 3DOR, vol 5
Schlette C, Buch AG, Aksoy EE, Steil T, Papon J, Savarimuthu TR, Worgotter F, Kruger N, Rossmann J (2014) A new benchmark for pose estimation with ground truth from virtual reality. Accepted for Production Engineering Research & Development (accepted)
Mustafa W, Pugeault N, Krüger N (2013) Multi-view object recognition using view-point invariant shape relations and appearance information. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, pp 4230–4237
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Buch AG, Kraft D, Kamarainen JK, Petersen HG, Krüger N (2013) Pose estimation using local structure-specific shape and appearance context. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, pp 2080–2087
Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395
Papon J, Kulvicius T, Aksoy EE, Wörgötter F (2013) Point cloud video object segmentation using a persistent supervoxel world-model. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, pp 3712–3718
Ude A, Nemec B, Petrič T, Morimoto J (2014) Orientation in cartesian space dynamic movement primitives. In: IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, pp 2997–3004
Newman WS, Branicky MS, Podgurski HA, Chhatpar S, Huang L, Swaminathan J, Zhang H (1999) Force-responsive robotic assembly of transmission components. In: IEEE International Conference on Robotics and Automation (ICRA), vol 3, Detroit, Michigan, pp 2096–2102
Broenink JF, Tiernego MLJ (1996) Peg-in-Hole assembly using impedance control with a 6 DOF robot. In: Proceedings of the 8th European Simulation Symposium, pp 504–508
Stemmer A, Albu-Schäffer A, Hirzinger G (2007) An analytical method for the planning of robust assembly tasks of complex shaped planar parts. In: IEEE International Conference on Robotics and Automation (ICRA), Rome, Italy, pp 317–323
Bruyninckx H, Dutre S, De Schutter J (1995) Peg-on-hole: a model based solution to peg and hole alignment. In: IEEE International Conference on Robotics and Automation (ICRA), vol 2, Nagoya, pp 1919–1924
Bristow D, Tharayil M, Alleyne A (2006) A survey of iterative learning control. IEEE Control Syst Mag 26(3):96–114
Moore K, Chen Y, Ahn HS (2006) Iterative learning control: a tutorial and big picture view. In: 45th IEEE Conference on Decision and Control, San Diego, pp 2352–2357
Nemec B, Abu-Dakka F, Jørgensen JA, Savarimuthu TR, Ridge B, Jouffroy J, Petersen HG, Krüger N, Ude A (2013) Transfer of assembly operations to new workpiece poses by adaptation to the desired force profile. In: International Conference on Advanced Robotics, Montevideo, Uruguay
Wolniakowski A, Miatliuk K, Krüger N, Rytzs JA (2014) Automatic evaluation of task-focused parallel jaw gripper design. SIMPAR 2014
Nemec B, Gams A, Ude A (2013) Velocity adaptation for self-improvement of skills learned from user demonstrations. In: IEEE-RAS International Conference on Humanoid Robots, Atlanta, pp 423–428
Author information
Authors and Affiliations
Corresponding author
Additional information
The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007–2013 (Specific Programme Cooperation, Theme 3, Information and Communication Technologies) under Grant agreement no. 269959, IntellAct.
Rights and permissions
About this article
Cite this article
Krüger, N., Ude, A., Petersen, H.G. et al. Technologies for the Fast Set-Up of Automated Assembly Processes. Künstl Intell 28, 305–313 (2014). https://doi.org/10.1007/s13218-014-0329-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13218-014-0329-9