Ontology-Based Mobile Communication in Agriculture | KI - Künstliche Intelligenz Skip to main content
Log in

Ontology-Based Mobile Communication in Agriculture

  • Technical Contribution
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

This paper describes the use of semantic technologies to enable a public/private communication network in the iGreen project. The motivation for using semantic technologies is outlined, and a description of the iGreen ontology-server is given, and the services this provides to users and developers. We discuss the semantic data-sets published in iGreen and the steps taken to enrich and interlink these.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://aims.fao.org/standards/agrovoc/.

  2. http://www.w3.org/DesignIssues/LinkedData.html.

  3. http://couchdb.apache.org/.

  4. http://json.org/.

  5. http://json-ld.org/.

  6. https://github.com/couchbase/geocouch/.

  7. http://isobus.net/.

  8. http://eppt.eppo.org/.

  9. http://dbpedia.org/.

  10. http://qudt.org/.

  11. http://pouchdb.com/.

References

  1. Bernardi A (2010) iGreen: Organisationsübergreifendes Wissensmanagement in öffentlich-privater Kooperation. In: Automatisierung und Roboter in der Landwirtschaft (KTBL-Tage-2010), Erfurt, Germany, vol 480. KTBL, pp 91–99

  2. Bernardi A, Dengel A (2009) iGreen: Mobile Plattform für organisationsübergreifendes Wissensmanagement. In: Proceedings of KnowTech-2009, Bad Homburg, Germany

    Google Scholar 

  3. Bernardi A (2013) iGreen—intelligent technologies for public-private knowledge management in agriculture. Künstl Intell. doi:10.1007/s13218-013-0272-1

    Google Scholar 

  4. Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so far. Int J Semantic Web Inf Syst 5(3):1–22

    Article  Google Scholar 

  5. Brickley D, Guha RV (2004) RDF vocabulary description language 1.0: RDF schema. W3C recommendation. World Wide Web Consortium

  6. Harris S, Seaborne A (eds) (2010) SPARQL 1.1 query language. Working draft, W3C

  7. Hillenbrand M (2008) Eine serviceorientierte Middleware für die Bereitstellung von Diensten im Internet unter Berücksichtigung von Transparenz, Offenheit und Zuverlässigkeit. PhD thesis

  8. Kunisch M, Frisch J, Martini D, Böttinger S (2007) agroxml—a standardized language for data exchange in agriculture. In: Proceedings of 6th biennial conference of European Federation of IT in agriculture, Glasgow

    Google Scholar 

  9. Lehmann J, Bizer C, Kobilarov G, Auer S, Becker C, Cyganiak R, Hellmann S (2009) DBpedia—a crystallization point for the Web of data. J Web Semant 7(3):154–165. doi:10.1016/j.websem.2009.07.002

    Article  Google Scholar 

  10. McGuinness DL, van Harmelen F (2004) OWL Web ontology language overview. W3C recommendation, World Wide Web Consortium. http://www.w3.org/TR/owl-features/

  11. Sintek M, van Elst L, Scerri S, Handschuh S (2007) Distributed knowledge representation on the social semantic desktop: named graphs, views and roles in NRL. In: Proceedings of the 4th European semantic Web conference (ESWC)

    Google Scholar 

Download references

Acknowledgements

The German ministry for education and research (Bundesministerium für Bildung und Forschung, BMBF) funded the iGreen project in the IKT-2020 framework under funding-code 01IA08005A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Kiesel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimnes, G.A., Kiesel, M. & Bernardi, A. Ontology-Based Mobile Communication in Agriculture. Künstl Intell 27, 335–339 (2013). https://doi.org/10.1007/s13218-013-0270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-013-0270-3

Keywords

Navigation