Droplet-based digital PCR system for detection of single-cell level of foodborne pathogens | BioChip Journal Skip to main content

Advertisement

Log in

Droplet-based digital PCR system for detection of single-cell level of foodborne pathogens

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Recently, foodborne pathogen is a common and distressing disease around world to cause a threat to life and economic damages and it is urgent to develop a tools to diagnosis of such pathogens in the early stage to prevent potential outbreak. Although conventional cell extraction and recovery of DNA from pathogen and PCR method have been widely used, the methods require complex steps, experts, and expensive chemicals and instruments to improve the PCR performance. Herein, we report a droplet-based polymerase chain reaction (ddPCR) system which allows identifying single-cell level of foodborne pathogens. E. coli O157:H7 and Salmonella cells were selected as model bacterial foodborne pathogens. The ddPCR system could be a useful platform for the quantitative detection of foodborne pathogens without any pretreatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scallan, E. et al. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 17, 7 (2011).

    Article  Google Scholar 

  2. Scallan, E. et al. Foodborne illness acquired in the United States-unspecified agents. Emerg. Infect. Dis. 17, 16 (2011).

    Article  Google Scholar 

  3. Morens, D.M., Folkers, G.K. & Fauci, A.S. The challenge of emerging and re-emerging infectious diseases. Nature 430, 242–249 (2004).

    Article  CAS  Google Scholar 

  4. Khan, R. et al. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 14, 586–597 (2009).

    Article  CAS  Google Scholar 

  5. Velusamy, V. et al. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 28, 232–254 (2010).

    Article  CAS  Google Scholar 

  6. Weinstein, M.P. et al. Controlled evaluation of BacT/Alert standard aerobic and FAN aerobic blood culture bottles for detection of bacteremia and fungemia. J. Clin. Microbiol. 33, 978–981 (1995).

    CAS  Google Scholar 

  7. Gebert, S., Siegel, D. & Wellinghausen, N. Rapid detection of pathogens in blood culture bottles by realtime PCR in conjunction with the pre-analytic tool MolYsis. J. Infect. 57, 307–316 (2008).

    Article  Google Scholar 

  8. Rangel, J.M. et al. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002 (2005).

    Google Scholar 

  9. Louie, M., Louie, L. & Simor, A.E. The role of DNA amplification technology in the diagnosis of infectious diseases. Can. Med. Assoc. J. 163, 301–309 (2000).

    CAS  Google Scholar 

  10. Zhu, Z. et al. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level. Lab Chip 12, 3907–3913 (2012).

    Article  CAS  Google Scholar 

  11. Miller, O.J. et al. Directed evolution by in vitro compartmentalization. Nat. Methods 3, 561–570 (2006).

    Article  CAS  Google Scholar 

  12. Hindson, C.M. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods 10, 1003–1005 (2013).

    Article  CAS  Google Scholar 

  13. Huggett, J.F., Cowen, S. & Foy, C.A. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin. Chem. 61, 79–88 (2015).

    Article  CAS  Google Scholar 

  14. Cao, L. et al. Advances in digital polymerase chain reaction (ddPCR) and its emerging biomedical applications. Biosens. Bioelectron. 90, 459–474 (2017).

    Article  CAS  Google Scholar 

  15. Tsao, S.C.-H. et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci. Rep. 5, 11198 (2015).

    Article  Google Scholar 

  16. Sedlak, R.H. et al. Identification of chromosomally integrated human herpesvirus 6 by droplet digital PCR. Clin. Chem. 60, 765–772 (2014).

    Article  CAS  Google Scholar 

  17. Mashaghi, S., Abbaspourrad, A., Weitz, D.A. & van Oijen, A.M. Droplet microfluidics: A tool for biology, chemistry and nanotechnology. Trends Analyt. Chem. 82, 118–125 (2016).

    Article  CAS  Google Scholar 

  18. Cámara, E., Albiol, J. & Ferrer, P. Droplet digital PCRaided screening and characterization of Pichia pastoris multiple gene copy strains. Biotechnol. Bioeng. 113, 1542 (2016).

    Article  Google Scholar 

  19. Rakszewska, A., Tel, J., Chokkalingam, V. & Huck, W.T. One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis. NPG Asia Mater. 6, e133 (2014).

    Google Scholar 

  20. Geng, T., Novak, R. & Mathies, R.A. Single-cell forensic short tandem repeat typing within microfluidic droplets. Anal. Chem. 86, 703–712 (2013).

    Article  Google Scholar 

  21. Chokkalingam, V. et al. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip 13, 4740–4744 (2013).

    Article  CAS  Google Scholar 

  22. Leng, X. et al. Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Lab Chip 10, 2841–2843 (2010).

    Article  CAS  Google Scholar 

  23. Geng, T. & Mathies, R.A. Minimizing inhibition of PCR-STR typing using digital agarose droplet microfluidics. Forensic Science International: Genetics 14, 203–209 (2015).

    Article  CAS  Google Scholar 

  24. Park, K.J. et al. Micropillar arrays enabling single microbial cell encapsulation in hydrogels. Lab Chip 14, 1873–1879 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seok Jae Lee or Kyoung G. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, M., Jeong, S.W., Bae, N.H. et al. Droplet-based digital PCR system for detection of single-cell level of foodborne pathogens. BioChip J 11, 329–337 (2017). https://doi.org/10.1007/s13206-017-1410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-1410-x

Keywords

Navigation