Bayesian analysis for Type-II hybrid censored sample from inverse Weibull distribution | International Journal of System Assurance Engineering and Management
Skip to main content

Bayesian analysis for Type-II hybrid censored sample from inverse Weibull distribution

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In this paper, we have discussed the Bayesian procedure for the estimation of the parameters of inverse Weibull distribution under Type-II hybrid censoring scheme. The highest posterior density credible intervals for the parameters have also been constructed. The performance of the Bayes estimators of the model parameters have been compared with maximum likelihood estimators through the Monte Carlo Markov chain techniques. Finally, two real data sets have been analysed for illustration purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouammoh AM, Alshingiti AM (2009) Reliability estimation of generalized inverted exponential distribution. J Stat Comput Simul 79:1301–1315

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee A, Kundu D (2008) Inference based on Type-II hybrid censored data from a weibull distribution. IEEE Trans Reliab 57:369–378

    Article  Google Scholar 

  • Brooks S (1998) Markov chain Monte Carlo method and its application. J R Stat Soc Ser D 47:69–100

    Article  Google Scholar 

  • Calabria R, Pulcini G (1994) Bayes 2-sample prediction for the inverse Weibull distribution. Commun Stat Theroy Methods 23(6):1811–1824

    Article  MathSciNet  MATH  Google Scholar 

  • Chen M, Shao Q (1998) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 6:66–92

    Google Scholar 

  • Chen S, Bhattacharyya G (1988) Exact confidence bound for an exponential under hybrid censoring. Commun Stat Theory Methods 17:1858–1870

    MathSciNet  Google Scholar 

  • Childs A, Chandrasekar B, Balakrishnan N, Kundu D (2003) Exact likelihood inference based on Type-I and Type-II hybrid censored sample from the exponential distribution. Ann Inst Stat Math 55:319–330

    MathSciNet  MATH  Google Scholar 

  • Ebrahmini N (1986) Estimating the parameters of an exponential form a hybrid life test. J Stat Plan Inference 14:255–261

    Article  Google Scholar 

  • Epstein B (1954) Truncated life test in the exponential case. Ann Math Stat 25:555–564

    Article  MATH  Google Scholar 

  • Fuller-Jr E, Frieman S, Quinn J, Quinn G, Carter W (1994) Fracture mechanics approach to the design of glass aircraft windows: a case study. SPIE Proc 2286:419–430

    Article  Google Scholar 

  • Ganguly A, Mitra S, Samanta D, Kundu D (2012) Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring. J Stat Plan Inference 142:613–625

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta PK, Singh B (2012) Parameter estimation of lindley distribution with hybrid censored data. Int J Syst Assur Eng Manag 1:1–8 doi:10.1007/s13198-012-0120-y

    Google Scholar 

  • Gupta R, Kundu D (1998) Hybrid censoring schemes with exponential failure distribution. Commun Stat Theory Methods 27:3065–3083

    Article  MATH  Google Scholar 

  • Hastings W (1970) Monte Carlo sampling methods using markov chains and their applications. Biometrika 55:97–109

    Article  Google Scholar 

  • Kenneth F, Richard M, Richard D (1982) A confidence interval for an exponential parameter from a hybrid life test. J Am Stat Assoc 77:137–140

    Article  MATH  Google Scholar 

  • Khan M, Pasha G, Pasha A (2008) Theoretical analysis of inverse weibull distribution. WSEAS Trans Math 7:1109–2769

    Google Scholar 

  • Kim DH, Lee WD, Kang SG (2012) Non-informative priors for inverse weibull distribution. J Stat Comput Simul iFirst:1–16

    Google Scholar 

  • Krishna H, Kumar K (2012) Reliability estimation in generalized inverted exponential distribution with progressively type ii censored sample. J Stat Comput Simul iFirst:1–13

    Google Scholar 

  • Kundu D (2007) On hybrid censored Weibull distribution. J Stat Plan Inference 137:2127–2142

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu D, Pradhan B (2009) Estimating the parameters of the generalized exponential distribution in presence of the hybrid censoring. Commun Stat Theory Methods 38:2030–2041

    Article  MathSciNet  MATH  Google Scholar 

  • Kundua D, Howlader H (2010) Bayesian inference and prediction of the inverse weibull distribution for Type-II censored data. Comput Stat Data Anal 54:1547–1558

    Article  Google Scholar 

  • Langlands A, Pocock S, Kerr G, Gore S (1997) Long-term survival of patients with breast cancer: a study of the curability of the disease. Br Med J 2:1247–1251

    Article  Google Scholar 

  • Noor F, Aslam M (2013) Bayesian inference of the inverse weibull mixture distribution using Type-I censoring. J Appl Stat. doi:10.1080/02664763.2013.780157

  • Panahi H, Asadi S (2011) Analysis of the Type-II hybrid censored burr Type XII distribution under linex loss function. Appl Math Sci 5:3929–3942

    MathSciNet  MATH  Google Scholar 

  • Park S, Balakirshnan N (2012) A very flexible hybrid censoring scheme and its fisher information. J Stat Comput Simul 82:41–50

    Article  MathSciNet  MATH  Google Scholar 

  • Singh SK, Singh U, Kumar D (2013) Bayesian estimation of parameters of inverse weibull distribution. J Appl Stat doi:10.1080/02664763.2013.789492

  • Smith A, Roberts G (1993) Bayesian computation via the gibbs sampler and related markov chain Monte Carlo methods. J R Stat Soc Ser B 55:3–23

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.K., Singh, U. & Sharma, V.K. Bayesian analysis for Type-II hybrid censored sample from inverse Weibull distribution. Int J Syst Assur Eng Manag 4, 241–248 (2013). https://doi.org/10.1007/s13198-013-0172-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-013-0172-7

Keywords