Abstract
Recently, sparse representation has been applied to visual tracking by casting the tracking problem into linear regression problem with sparse coefficient constraint. Under the Gaussian error distribution assumption, the reconstructed loss function is composed of sum-of-squares error term and \(\ell 1\) regularization, which is sensitive to the outliers caused by occlusion and local deformation. In this paper, we propose a robust and efficient \(\ell 1\) tracker based on laplacian error distribution and structured similarity regularization in a particle filter framework. Specifically, we model the error term by laplacian distribution, which has better robustness to the outliers than Gaussian distribution. Meanwhile, in contrast to most existing \(\ell 1\) trackers that handle particles independently, we exploit the dependence relationship between particles and impose the structured similarity regularization on the sparse coefficient set. The customized Inexact Augmented Lagrange Method (IALM) is derived to efficiently solve the optimization problem in batch mode. In addition, we also reveal that the proposed method is related to the robust regression with self-adaptive Huber loss function. Both the computational efficiency and tracking accuracy are enhanced by this novel cost function and optimization strategy. Qualitative and quantitative evaluations on the largest open benchmark video sequences show that our approach outperforms most state-of-the-art trackers.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The indicator function is used to replace the positive constraint on the representation coefficients and convert the optimization problem into the equivalent constraint minimization problem.
References
Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Computer Vision and Pattern Recognition, IEEE Computer Society Conference, vol. 1, pp 798–805
Avidan S (2004) Support vector tracking. Patt Anal Mach Int IEEE Trans 26(8):1064–1072
Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. Patt Anal Mach Int IEEE Trans 33(8):1619–1632
Bao C, Wu Y, Ling H, Ji H (2012) Real time robust \(l1\) tracker using accelerated proximal gradient approach. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 1830–1837
Bhuyan M, Ramaraju VV, Iwahori Y (2013) Hand gesture recognition and animation for local hand motions. Int J Mach Learn Cybern 1–17
Dinh TB, Vo N, Medioni G (2011) Context tracker: exploring supporters and distracters in unconstrained environments. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 1177–1184
Doucet A, De Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Springer, New York
Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: British Machine Vision Conference, vol. 1, pp 47–56
Hare S, Saffari A, Torr PH (2011) Struck: structured output tracking with kernels. In: Computer Vision (ICCV), IEEE International Conference, pp 263–270
Henriques JF, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: Computer Vision-ECCV, Springer, pp 702–715
Henriques JF, Caseiro R, Martins P, Batista J (2014) High-speed tracking with kernelized correlation filters. arXiv preprint arXiv:1404.7584
Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 1822–1829
Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: bootstrapping binary classifiers by structural constraints. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 49–56
Kwon J, Lee KM (2010) Visual tracking decomposition. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 1269–1276
Kwon J, Lees KM (2011) Tracking by sampling trackers. In: 2011 International Conference on Computer Vision, pp 1195–1202
Lin Z, Liu R, Zhixun S (2011) Linearized alternating direction method with adaptive penalty for low rank representation. Adv Neural Inform Process Syst
Liu B, Huang J, Yang L, Kulikowsk C (2011) Robust tracking using local sparse appearance model and k-selection. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 1313–1320
Mei X, Ling H (2009) Robust visual tracking using \(l1\) minimization. In: Computer Vision, IEEE 12th International Conference, pp 1436–1443
Mei X, Ling H, Wu Y, Blasch E, Bai L (2011) Minimum error bounded efficient \(l1\) tracker with occlusion detection. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 1257–1264
Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141
Wang N, Wang J, Yeung DY (2013) Online robust non-negative dictionary learning for visual tracking. In: Computer Vision (ICCV), IEEE International Conference, pp 657–664
Wang N, Yeung DY (2013) Learning a deep compact image representation for visual tracking. In: Advances in Neural Information Processing Systems, pp 809–817
Wright J, Ma Y (2010) Dense error correction via-minimization. Inform Theory IEEE Trans 56(7):3540–3560
Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 2411–2418
Yang MH, Zhang L (2014) Fast compressive tracking. IEEE Trans Patt Anal Mach Int 1
Zhang T, Ghanem B, Liu S, Ahuja N (2012) Low-rank sparse learning for robust visual tracking. In: Computer Vision-ECCV, Springer, pp 470–484
Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 2042–2049
Zhang T, Ghanem B, Liu S, Ahuja N (2013) Robust visual tracking via structured multi-task sparse learning. Int J Comput Vis 101(2):367–383
Zhang T, Liu S, Ahuja N, Yang MH, Ghanem B (2014) Robust visual tracking via consistent low-rank sparse learning. Int J Comput Vis 1–20
Zhong W, Lu H, Yang MH (2012) Robust object tracking via sparsity-based collaborative model. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 1838–1845
Acknowledgments
Project supported by the National Natural Science Foundation of China (Grant No. 61272220 and No. 61401212), Jiangsu postdoctoral research grant program (No. 1301026C) and the natural science foundation of Jiangsu Province (Grant No. BK2012399).
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Inference details for structure similarity regularization
For notational simplicity, we ignore the symbol \(a\) of the representation coefficient. Under the condition of that \(g (c_i,c_j)=\Vert c_i-c_j\Vert _2\), Eq. 4 can be reformulated as follows:
where the fourth equality of (A.1) holds due to the symmetric properties of the matrix \(W\), that is \(W_{(i,:)}=W_{(:,i)}\).
Appendix 2: The convergence properties of customized IALM algorithm for Eq. 7
To proof Theorems 1, we first give the following two lemmas:
Lemma 1
Given the norm \(\Vert \cdot \Vert\) in Hilbert space and the sub-gradient variable \(y\in \partial \Vert \cdot \Vert\), the corresponding dual norm \(\Vert \cdot \Vert ^*\) is no more than 1. (see [16] for a Proof).
Lemma 2
The sequences \(\{Y_{(\cdot ,k)}\}\) , \(\{Y_{(\cdot ,k)}\}^*\) and \(\{\tilde{Y}_{(\cdot ,k)}\}\) are all bounded, where \(\tilde{Y}_{(G,k)}=Y_{(G,k-1)}+\mu _{k-1}(C_{k-1}-G_{k-1})\), \(\tilde{Y}_{(H,k)}=Y_{(H,k-1)}+\mu _{k-1}(C_{k-1}-H_{k-1})\) and \(\tilde{Y}_{(E,k)}=Y_{(E,k-1)}+\mu _{k-1}(X-DC_k-E_{k-1})\).
Proof
Setting the derivatives of Eq.8 with respect to \(G\) equal to zero, we obtain the following condition: \(\quad 0\in \partial \Vert G_{k+1}^*\Vert _1-Y_{(G,k)}^*-\mu _k(C_{k+1}^*-G_{k+1}^*)\), i.e. \(Y_{(G,k+1)}^*=Y_{(G,k)}^*+\mu _k(C_{k+1}^*-G_{k+1}^*)\in \alpha \partial \Vert G_{(k+1)}^*\Vert _1\). Combing Lemma 1 and the fact that dual norm of \(\Vert \cdot \Vert _1\) is \(\Vert \cdot \Vert _\infty\), we have that \(\Vert Y_{(G,k+1)}^*\Vert _\infty \le \alpha\). Hence, the sequence \(\{Y_{(G,k+1)}^*\}\) is bounded. The other sequences \(\{Y_{(H,k)}^*\}\), \(\{Y_{(E,k)}^*\}\), \(\{Y_{(\cdot ,k)}\}\) and \(\{\tilde{Y}_{(\cdot ,k)}\}\) can be proved to be bounded in the same way. \(\square\)
Proof of Theorem 1
First, we proof that the variables sequences \(\{E_k,C_k,G_k,H_k\}\) have the limit \(\{\hat{E},\hat{C},\hat{G},\hat{H}\}\). Note that \(\tilde{Y}_{(E,k)}=Y_{(E,k-1)}+\mu _{k-1}(X-DC_k-E_{k-1})\) and \(Y_{(E,k)}=Y_{(E,k-1)}+\mu _{k-1}(X-DC_k-E_k)\) (defined in Alg.1),we have that \(\Vert E_k-E_{k-1}\Vert =\mu _{k-1}^{-1}\Vert \tilde{Y}_{(E,k)}-Y_{(E,k)}\Vert\). Due to the boundedness of \(\{\tilde{Y}_{(E,k)}\}\) and \(\{Y_{(E,k)}\}\), we get that \(\Vert E_k-E_{k-1}\Vert =O(\mu _{k-1}^{-1})\). Based on the assumption \(\sum _{k=1}^{+\infty }\mu _k^{-2}\mu _{k+1}<+\infty ,\mu _{k+1}>\mu _k\) (i.e. \(\sum _{k=1}^{+\infty }\mu _k^{-1}<+\infty )\), the sequence \(\{E_k\}\) is a Cauchy sequence, hence it has a limit \(\hat{E}\). By \(Y_{(E,k+1)}=Y_{(E,k)}+\mu _k(X-DC_{k+1}-E_{k+1})\) and the boundedness of \(\{Y_{(E,k)}\}\), we have that \(\lim \limits _{k\rightarrow \infty }(X-DC_k-E_k)=\mu _k^{-1}(Y_{(E,k+1)}-Y_{(E,k)})=0\). We conclude that \(\{C_k\}\) also has the limit \(\hat{C}\). So does with \(\hat{G}\) and \(\hat{H}\) cause that \(\lim \limits _{k\rightarrow \infty }(C_k-G_k)=0\) and \(\lim \limits _{k\rightarrow \infty }(C_k-H_k)=0\). \(\square\)
Now, we proof that \(\{\hat{E},\hat{C},\hat{G},\hat{H}\}\) converge to the optimal solution \(\{G^*,H^*,C^*,E^*\}\) . We denote the optimal value of Fun.7 by \(P^*\). According to the equivalent constraint, we get that \(C^*=G^*=H^*\), \(X=DC^*+E^*\), \(C^*\ge 0\), \(\varphi (C^*)=0\),and \(\varphi (C_{k+1})=0\). We observe that \(\hat{Y}_{(G,k+1)}\in \alpha \partial \Vert G_{k+1}\Vert _1\), \(\hat{Y}_{(H,k+1)}\in \beta \partial (H_{k+1}LH_{k+1}^\mathrm {T})\) and \(\hat{Y}_{(E,k+1)}\in \alpha \partial \Vert E_{k+1}\Vert _1\). By the convexity of norms we have that
The last three term of Eqn.17 can be reformulated as follows:
Combing Eqs.17 and 18, we get that
By the assumption \(\lim _{k\rightarrow +\infty }\mu _k(C_{k+1}-H_{k+1})=0\), \(\lim _{k\rightarrow +\infty }\mu _k(C_{k+1}-G_{k+1})=0\) and \(\lim _{k\rightarrow +\infty }\mu _k(E_{k+1}-E_k)=0\), we get that \(\lim _{k\rightarrow +\infty }\mu _k(C_k-G_k)=0\) . When \(k\rightarrow +\infty\) , the terms except the first one all approaches to zeros due to the boundedness of \(\{Y_{(\cdot ,k)}\}\) and \(\{E^*,C^*,G^*,H^*,\hat{E},\hat{C},\hat{G},\hat{H}\}\). Consequently, \(\lim _{k\rightarrow +\infty }\Vert E_{k+1}\Vert _1+\alpha \Vert G_{k+1}\Vert _1+\beta \mathrm {tr}(H_{k+1}LH_{k+1}^\mathrm {T})+\varphi (C_{k+1})\le P^*\). Hence, \(\{\hat{E},\hat{C},\hat{G},\hat{H}\}\) is the optimal solution of the Fun.7.
Appendix 3: Inference details for Eqs. 13 and 15
We reformulate the form of \(\mathcal {L}(E_{k+1})\) in element-wise:
-
1.
If \(|r_{ij}^{k+1}+\frac{y_{ij}^k}{\mu _k}|<\lambda\) , then \(e_{ij}^{k+1}=0\) , we have that
$$\begin{aligned} \mathcal {L}(e_{ij}^{k+1})=\frac{\mu _k}{2}(r_{ij}^{k+1}+\frac{y_{ij}^k}{\mu _k})^2-\frac{(y_{ij}^k)^2}{2\mu _k}. \end{aligned}$$ -
2.
If \(|r_{ij}^{k+1}+\frac{y_{ij}^k}{\mu _k}|\ge \lambda\) , then \(e_{ij}^{k+1}=sgn(r_{ij}^{k+1}+\frac{y_{ij}^k}{\mu _k})(|r_{ij}^{k+1}+\frac{y_{ij}^k}{\mu _k}|-\frac{1}{\mu _k})\), we have that
$$\begin{aligned} \mathcal {L}\left( e_{ij}^{k+1}\right)&=||r_{ij}^{k+1}+\frac{y_{ij}^k}{\mu _k}|-\frac{1}{\mu _k}| +\frac{\mu _k}{2}\left( \frac{1}{\mu _k}sgn(r_{ij}^{k+1}+\frac{y_{ij}^k}{\mu _k})\right) -\frac{(y_{ij}^k)^2}{2\mu _k}\\&=\left| r_{ij}^{k+1}+\frac{y_{ij}^k}{\mu _k}\right| -\frac{1}{\mu _k}+\frac{1}{2\mu _k}-\frac{(y_{ij}^k)^2}{2\mu _k}\\&=\mu _k\left( \frac{1}{\mu _k}\left| r_{ij}^{k+1}+\frac{y_{ij}^k}{\mu _k}\right| -\frac{1}{2\mu _k^2}\right) -\frac{\left( y_{ij}^k\right) ^2}{2\mu _k}.\\ \end{aligned}$$
As for Eq. 15, combining that \(y_{ij}^k=y_{ij}^{k-1}+\mu _{k-1}\left( r_{ij}^k-e_{ij}^k\right)\), we obtain
Rights and permissions
About this article
Cite this article
Wu, G., Zhao, C., Lu, W. et al. Efficient structured \(\ell 1\) tracker based on laplacian error distribution. Int. J. Mach. Learn. & Cyber. 6, 581–595 (2015). https://doi.org/10.1007/s13042-015-0334-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-015-0334-9