Abstract
Multiobjective cellular genetic algorithms (MOcGAs) are variants of evolutionary computation algorithms by organizing the population into grid structures, which are usually 2D grids. This paper proposes a new MOcGA, namely cosine multiobjective cellular genetic algorithm (C-MCGA), for continuous multiobjective optimization. The CMCGA introduces two new components: a 3D grid structure and a cosine crowding measurement. The first component is used to organize the population. Compared with a 2D grid, the 3D grid offers a vertical expansion of cells. The second one simultaneously considers the crowding distances and location distributions for measuring the crowding degree values for the solutions. The simulation results show that C-MCGA outperforms two typical MOcGAs and two state-of-the-art algorithms, NSGA-II and SPEA2, on a given set of test instances. Furthermore, the proposed measurement metric is compared with that in NSGA-II, which is demonstrated to yield a more diverse population on most of the test instances.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abraham A, Jain L (2005) Evolutionary multiobjective optimization. Springer
Al-Naqi A, Erdogan AT, Arslan T (2010) Balancing exploration and exploitation in an adaptive three-dimensional cellular genetic algorithm via a probabilistic selection operator. In: Proceedings of 2010 NASA/ESA Conference on Adaptive Hardware and Systems, pp 258–264
Al-Naqi A, Erdogan AT, Arslan T Fault tolerance through automatic cell isolation using three-dimensional cellular genetic algorithms. In: Proceedings of 2010 IEEE Congress on Evolutionary Computation (CEC 2010), pp 1–8
Al-Naqi A, Erdogan AT, Arslan T Fault tolerant three-dimensional cellular genetic algorithms with adaptive migration schemes. In: Proceedings of 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2011), pp 352–359
Al-Naqi A, Erdogan AT, Arslan T (2012) Dynamic Fault-Tolerant three-dimensional cellular genetic algorithms. J Parallel Distrib Comput 73(2):122–136
Alba E, Dorronsoro B (2008) Cellular Genetic Algorithms. Springer-Verlag, Berlin
Alba E, Dorronsoro B, Giacobini M, Tomasini M (2006) Decentralized cellular evolutionary algorithms. Handbook of Bioinspired Algorithms and Applications. CRC Press, Boca Raton, pp 103–120
Alba E, Dorronsoro B, Luna F, Nebro AJ, Bouvry P, Hogie L (2007) A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. Comput Commun 30(4):685–697
Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms. IEEE Trans Evol Comput 6(5):443–462
Alba E, Troya JM (2002) Improving flexibility and efficiency by adding parallelism to genetic algorithms. Statistics and Comput 12(2):91–114
Cantu-Paz E (2000) Efficient and accurate parallel genetic algorithms. Springer
Chen C-J (2012) Structural vibration suppression by using neural classifier with genetic algorithm. Int J Mach Learn Cybernet 3(3):215–221
Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279
Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Springer
Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R (eds) evolutionary multiobjective optimization. Springer-Verlag, Heidelberg, pp 105–145
Durillo JJ, Nebro AJ, Luna F, Alba E (2008) Solving three-objective optimization problems using a new hybrid cellular genetic algorithm. In: Proceedings of the 10th international conference on parallel problem solving from nature (PPSN X), pp 661–670
Ishibuchi H, Doi T, Nojima Y (2006) Effects of using two neighborhood structures in cellular genetic algorithms for function optimization. In: Proceedings of the 9th international conference on parallel problem solving from nature (PPSN IX), pp 949–958
Zhu J, Li X, Shen W (2011) Effective genetic algorithm for resource-constrained project scheduling with limited preemptions. Int J Mach Learn Cybernet 2(2):55–65
Kim M, Hiroyasu T, Miki M, Watanabe S (2004) SPEA2 + : Improving the performance of the strength Pareto evolutionary algorithm 2. In: Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), pp 742–751
Knowles J, Corne D The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC 99), pp 98–105
Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302
Lu Y, Li M, Li L The cellular genetic algorithms with disaster: the size of disaster effects. In: Proceedings of the international conference on information engineering and computer science, pp 1–3
Manderick B, Spiessens P (1989) Fine-grained parallel genetic algorithms. In: Proceedings of the third international conference on genetic algorithms, pp 428-433
Miettinen K (1999) Nonlinear multiobjective optimization. Springer, Heidelberg
Mifa K, Tomoyuki H, Mitsunori M, Shinya W (2004) SPEA2 + : Improving the performance of the strength Pareto evolutionary algorithm 2. In: parallel problem solving from nature—PPSN VIII, volume 3242 of Lecture Notes in Computer Science, pp 742–751
Morales-Reyes A, Al-Naqi A, Erdogan AT, Arslan T Towards 3D architectures: A comparative study on cellular GAs dimensionality. In: Proceedings of 2009 NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2009), pp 223–229
Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E (2007) Design issues in a multiobjective cellular genetic algorithm. In: Lecture Notes in Computer Science, pp 126–140
Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E (2009) MOCell: a cellular genetic algorithm for multiobjective optimization. Int J Intell Sys 24(7):726–746
Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008) AbYSS: adapting scatter search to multiobjective optimization. IEEE Trans Evol Comput 12(4):439–457
Boehm O, Hardoon DR, Manevitz LM (2011) Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms. Int J Mach Learn Cybernet 2(3):125–134
Rudolph G, Sprave J A cellular genetic algorithm with self-adjusting acceptance threshold. In: Proceedings of the First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA 1995), pp 365–372
Van Veldhuizen DA, Lamont GB (1998) Multiobjective evolutionary algorithm research: A history and analysis., Department of Electrical and Computer Engineering, Air Force Institute of TechnologyWright-Patterson, OH
Wang Y-N, Wu L-H, Yuan X-F (2010) Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Comput 14(3):193–209
Whitley LD (1993) Cellular genetic algorithms. In: Proceedings of the 5th International Conference on Genetic Algorithms, p 658
Wang X, He Q, Chen D, Yeung D (2005) A genetic algorithm for solving the inverse problem of support vector machines. Neurocomputing 68:225–238
Zhang H, Song SM, Zhou AM MCGA: a multiobjective cellular genetic algorithm based on a 3D grid. In: Proceedings of the 14th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2013), pp 455-462
Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731
Zhang Y, Zhang H, Lu C (2012) Study on Parameter Optimization Design of Drum Brake Based on Hybrid Cellular Multiobjective Genetic Algorithm. Mathematical Problems in Engineering 2012
Zhou A, Qu B-Y, Li H, Zhao S-Z, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm and Evolutionary Computation 1(1):32–49
Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), pp 832–842
Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132
Acknowledgments
This work was supported by the National Basic Research Program of China (Grant No. 2012CB821205), the Foundation for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 61021002), the National Natural Science Foundation of China (Grant No. 51275274, 61174037, and 61273313), and the Innovation Funds of China Academy of Space Technology (Grant No. CAST20120602). The authors would like to thank the anonymous reviewers for their insightful comments and constructive suggestions that have improved the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, H., Song, S., Zhou, A. et al. A multiobjective cellular genetic algorithm based on 3D structure and cosine crowding measurement. Int. J. Mach. Learn. & Cyber. 6, 487–500 (2015). https://doi.org/10.1007/s13042-014-0277-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-014-0277-6