An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks | International Journal of Machine Learning and Cybernetics Skip to main content

Advertisement

Log in

An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In sparse wireless sensor networks, a mobile robot is usually exploited to collect the sensing data. Each sensor has a limited transmission range and the mobile robot must get into the coverage of each sensor node to obtain the sensing data. To minimize the energy consumption on the traveling of the mobile robot, it is significant to plan a data collection path with the minimum length to complete the data collection task. In this paper, we observe that this problem can be formulated as traveling salesman problem with neighborhoods, which is known to be NP-hard. To address this problem, we apply the concept of artificial bee colony (ABC) and design an ABC-based path planning algorithm. Simulation results validate the correctness and high efficiency of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arkin EM, Hassin R (1994) Approximation algorithms for the geometric covering salesman problem. Discrete Appl Math 55(3):197–218

    Article  MATH  MathSciNet  Google Scholar 

  2. Chiu KM, Liu JS (2011) Robot routing using clustering-based parallel genetic algorithm with migration. In: IEEE workshop on merging fields of computational intelligence and sensor technology (CompSens) (2011), pp 42–49

  3. Comarela G, Gonçalves K, Pappa GL, Almeida J, Almeida V (2011) Robot routing in sparse wireless sensor networks with continuous ant colony optimization. In: Proceedings of the 13th annual conference companion on genetic and evolutionary computation (GECCO ’11). ACM, New York, pp 599–606

  4. De Berg M, Gudmundsson J, Katz MJ, Levcopoulos C, Overmars MH, van der Stappen AF (2005) Tsp with neighborhoods of varying size. J Algorithms 57(1):22–36

    Article  MATH  MathSciNet  Google Scholar 

  5. Dorigo M, Gambardella L (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  6. Dorigo M, Stützle T (2004) Ant colony optimization. Bradford Company, Scituate

  7. Elbassioni K, Fishkin AV, Mustafa NH, Sitters R (2005) Approximation algorithms for euclidean group tsp. In: Proceedings of the 32nd international colloquim on automata, languages and programming (ICALP). Springer, Lisbon, Portugal, pp 1115–1126

  8. Gao WF, Liu SY (2012) A modified artificial bee colony algorithm. Comput Oper Res 39(3):687–697

    Article  MATH  Google Scholar 

  9. Gentilini I, Margot F, Shimada K (2013) The travelling salesman problem with neighbourhoods: Minlp solution. Optim Methods Softw 28(2):364–378

    Article  MATH  MathSciNet  Google Scholar 

  10. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  11. Karaboga D, Okdem S, Ozturk C (2010) Cluster based wireless sensor network routings using artificial bee colony algorithm. In: Proceedings of the 2010 international conference on autonomous and intelligent systems (AIS ’10). pp 1–5

  12. Li L, Cheng Y, Tan L, Niu B (2011) A discrete artificial bee colony algorithm for tsp problem. In: Proceedings of the 7th international conference on Intelligent Computing: bio-inspired computing and applications (ICIC’11). Springer-Verlag, Berlin, pp 566–573.doi:10.1007/978-3-642-24553-4_75

  13. Lin S, Kernighan B (1973) An effective heuristic algorithm for the traveling-salesman problem. Oper Res 21(2):498–516

    Article  MATH  MathSciNet  Google Scholar 

  14. Little J, Murty K, Sweeney D, Karel C (1963) An algorithm for the traveling salesman problem. Oper Res 11(6):972–989

    Article  MATH  Google Scholar 

  15. Papadimitriou C (1997) The euclidean traveling salesman problem is np-complete, vol 4. Elsevier, pp 237–244. http://www.sciencedirect.com/science/article/pii/0304397577900123

  16. Safra S, Schwartz O (2006) On the complexity of approximating tsp with neighborhoods and related problems. Comput Complex 14(4):281–307

    Article  MathSciNet  Google Scholar 

  17. Tekdas O, Isler V, Lim JH, Terzis A (2009) Using mobile robots to harvest data from sensor fields. Wirel Commun 16(1):22–28

    Article  Google Scholar 

  18. Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330

    Article  Google Scholar 

  19. Yuan B, Orlowska M, Sadiq S (2007) On the optimal robot routing problem in wireless sensor networks. IEEE Trans Knowl Data Eng 19(9):1252–1261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, WL., Zeng, D., Chen, RC. et al. An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks. Int. J. Mach. Learn. & Cyber. 6, 375–383 (2015). https://doi.org/10.1007/s13042-013-0195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-013-0195-z

Keywords

Navigation