Biogeochemical mechanisms controlling trophic state and micropollutant concentrations in a tropical artificial lake | Environmental Earth Sciences Skip to main content

Advertisement

Log in

Biogeochemical mechanisms controlling trophic state and micropollutant concentrations in a tropical artificial lake

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Lake Paranoá is a human-made water reservoir created in 1959 together with the new capital of Brazil (Brasilia). With the demands of urban development, population growth, and land use changes, the lake presented severe deterioration of water quality due to the disposal of wastewater with a high concentration of nutrients. To better elucidate the natural and anthropogenic sources controlling the water quality from Lake Paranoá, this study aimed to (1) investigate the main geochemical processes controlling water quality of the lake and its tributaries; (2) evaluate Lake Paranoá’s trophic state; and (3) determine the occurrence and fate of organic micropollutants in Lake Paranoá waters and WWTPs effluents. The waters from Lake Paranoá tributaries are naturally acidic due to the nature of the extremely weathered ferralsols and the crustal material composition. The main processes linked with anthropogenic activities that affect the water quality from the tributaries are the input of untreated domestic wastewater and the dissolution of carbonate minerals arising from construction material residues. Generally, the waters of Lake Paranoá presented low nutrient and chlorophyll-a concentrations, indicating a low trophic state (oligo-mesotrophic). A significant increase in the trophic state (super-eutrophic) was observed at specific regions of the lake that have high nutrient input from tributaries, caused by the continuous disposal of untreated domestic sewage. In Lake Paranoá waters, the organic micropollutants that were identified and quantified (caffeine, bezafibrate, bisphenol A, diethyl phthalate, and nonylphenol) presented concentrations consistent with previous studies and within the threshold of toxicity, except bisphenol A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abbt-Braun G, Bornick CCS, Brandão CBG et al (2014) Water quality of tropical reservoirs in a changing world—the case of lake Paranoá, Brasília, Brazil. In: Lorz C et al (eds) Integrated water resource management in Brazil, 1st edn. IWA Publisshing, London, pp 73–94

    Google Scholar 

  • Ahel M, Giger W, Koch M (1994a) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—I. Occurrence and transformation in sewage treatment. Water Res 28(5):1131–1142

    Article  Google Scholar 

  • Ahel M, Scully FE, Hoign J, Giger W (1994b) Photochemical degradation of nonylphenol and polyethoxylates in natural waters. Chemospher 28(7):1361–1368

    Article  Google Scholar 

  • AIST (Japan’s National Institute of Advanced Industrial Science and Technology) (2007) AIST Risk Assessment Document Series 4—Bisphenol A. Japan

  • Altafin IG, Mattos SP, Cavalcanti CGB, Estuqui VR (1995) Paranoá lake–Limnology and recovery program. Limnology in Brazil. Brazilian Academy of Science & Brazilian Limnological Society. Rio de Janeiro, pp 324–349

  • Angelini R, Bini LM, Starling FLRM (2008) Efeitos de diferentes intervenções no processo de eutrofização do lago Paranoá (Brasília—DF). Oecol Bras 12(3):564–571

    Article  Google Scholar 

  • Aster S, Vasyukova E, Ripl K, Kuse B, Günther N, Uhl W et al. (2010) Developing an integrated water resources management (IWRM) concept for the capital Brasília. GWF, Wasser—Abwasser, 151 (SPECIAL ISSUE), 52–57

  • AWWA (2002) Nitrification. American Water Works Association

  • Barnes K, Kolpin D, Meyer M (2002) Water-quality data for pharmaceuticals, hormones, and other organic wastewater contaminants in US streams 1999–2000. Environ Sci Technol 36(6):1202–1211

    Article  Google Scholar 

  • Behera SK, Kim HW, Oh JE, Park HS (2011) Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci Total Environ 409(20):4351–4360. doi:10.1016/j.scitotenv.2011.07.015

    Article  Google Scholar 

  • Boaventura GR, Freitas ALS (2006) Inorganic parameters as water quality indicators in acidic groundwater in a tropical region, Brasilia, DF, Brazil. Water Air Soil Pollut 171:135–151

    Article  Google Scholar 

  • Bolong N, Ismai AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239(1–3):229–246. doi:10.1016/j.desal.2008.03.020

    Article  Google Scholar 

  • CAESB (2014) Sinopse do Sistema de Esgotamento Sanitário do Distrito Federal. 27 ed. Brasília-DF

  • Campos JEG, Freitas-Silva FH (1998) Geologia do Distrito Federal In: IEMA/SEMATEC/UnB. Inventário Hidrogeológico e dos Recursos Hídricos Superficiais do Distrito Federal, Brasília

  • Canada (2008) Environment Canada, Health Canada. Screening Assessment for the Challenge Phenol, 4,4′ (1-methylethylidene)bis- (Bisphenol A) CAS 80-05-7. Canada

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22–2:361–369

    Article  Google Scholar 

  • Carmelo AC (2002) Caracterização de Aqüíferos Fraturados por Integração de Informações Geológicas e Geofísicas. PhD Dissertation, University of Brasília

  • Carmo M, Boaventura GR et al (2012) Estudo geoquímico de sedimentos de corrente da bacia hidrográfica do Rio Descoberto (BHRD) Brasília/DF. Geochim Brasil 17(2):106–120

    Google Scholar 

  • Carvalho AM (2013) Estudo geoquímico da qualidade da água da bacia do Riacho Fundo—DF. Dissertation, University of Brasília

  • Clara M, Windhofer G, Hartl W, Braun K, Simon M et al (2010) Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere 78(9):1078–1084

    Article  Google Scholar 

  • Clarke BO, Smith SR (2011) Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37(1):226–247. doi:10.1016/j.envint.2010.06.004

    Article  Google Scholar 

  • Corvini PFX, Schäffer A, Schlosser D (2006) Microbial degradation of nonylphenol and other alkylphenols-our evolving view. Appl Microbiol Biotechnol 72(2):223–243. doi:10.1007/s00253-006-0476-5

    Article  Google Scholar 

  • Cunha DGF, Calijuri MDC, Lamparelli MC (2013) A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126–134. doi:10.1016/j.ecoleng.2013.07.058

    Article  Google Scholar 

  • Dargnat C, Teil MJ, Chevreuil M, Blanchard M (2009) Phthalate removal throughout wastewater treatment plant: case study of Marne Aval station (France). Sci Total Environ 407(4):1235–1244. doi:10.1016/j.scitotenv.2008.10.027

    Article  Google Scholar 

  • Dias RZ (2013) Papel da wetland do riacho fundo no controle da eutrofização do lago paranoá, brasília—Distrito federal. Dissertation, University of Brasília

  • Ding WH, Tzing SH (1998) Analysis of nonylphenol polyethoxylates and their degradation products in river water and sewage effluent by gas chromatography-ion trap (tandem) mass spectrometry with electron impact and chemical ionization. J Chromatogr A 824(1):79–90

    Article  Google Scholar 

  • Dom PB, Choq CS, Getempo JJ (1987) Degradation of Bandphenol A in Natural Waters. Chemolpfzere 16(7):1501–1507

    Google Scholar 

  • Doods WK (2006) Eutrophication and trophic state in rivers and streams. Limnol Oceanogr 51(1part2):671–680. doi:10.4319/lo.2006.51.1_part_2.0671

  • Echeverria RM (2007) Avaliação de Impactos Ambientais nos Tributários do Lago Paranoá, Brasília—DF. Dissertation, University of Brasília

  • Ekelund R, Bergmanb Å, Granmo Å, Berggren M (1990) Bioaccumulation of 4-nonylphenol in marine animals—a re-evaluation. Environ Pollut 64:107–120

    Article  Google Scholar 

  • EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) (1978) Levantamento e Reconhecimento de Solos do Distrito Federal. Boletim Técnico (53), Rio de Janeiro

  • EU (2002) European Union Risk-Assessment Report Vol.10, 2002 on 4-nonylphenol (branched) and nonylphenol, European Chemicals Bureau, Joint Research Centre, European Commission, Ispra, Italy. ISBN 92-827-801  

  • EU (2008a) European Union Risk Assessment Report. Institute for Health and Consumer Protection, European Chemicals Bureau, European Commission Joint Research Centre, 3rd Priority List, Luxembourg: Office for Official Publications of the European Communities

  • EU (2008b) European Union Updated Risk Assessment Report. Bisphenol A, CAS No: 80-05-7. Institute for Health and Consumer Protection, European Chemicals Bureau, European Commission Joint Research Centre, 3rd Priority List, Luxembourg: Office for Official Publications of the European Communities

  • Farnham IM, Johannesson KH, Singh AK, Hodge VF, Stetzenbach KJ (2003) Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal Chim Acta 490:123–138

  • Ferreira A (2005) Caffeine as an environmental indicator for assessing urban aquatic ecosystems. Cadernos Saúde Públ 21(6):1884–1892

    Article  Google Scholar 

  • Ferreira MMS, Walde DHG, Mulholland DS, Boaventura GR (2015) Influencias Geológicas y Antrópicas en la Calidad de las Aguas Subterráneas Localizadas al Sur de Brasilia (DF), Brasil. Geociencias Aplicadas Latinoamericanas 2:11–21

    Google Scholar 

  • Fonseca FO (2001) Olhares sobre o Lago Paranoá. Secretaria de Meio Ambiente e Recursos Hídricos—SEMARH, Brasília

  • Franz C, Makeschin F, Weiß H, Lorz C (2013) Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: a study on anthropogenic introduced chemical elements in an urban river basin. Sci Total Environ 452(453):411–420. doi:10.1016/j.scitotenv.2013.02.077

    Article  Google Scholar 

  • Fromme H, Thomas K, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438

    Article  Google Scholar 

  • Gao D, Li Z, Wen Z, Ren N (2014) Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 95:24–32. doi:10.1016/j.chemosphere.2013.08.009

    Article  Google Scholar 

  • Garcia-Ac A, Segura PA, Gagnon C, Sauvé S (2009) Determination of bezafibrate, methotrexate, cyclophosphamide, orlistat and enalapril in waste and surface waters using on-line solid-phase extraction liquid chromatography coupled to polarity-switching electrospray tandem mass spectrometry. J Environ Monit 11(4):830–838. doi:10.1039/b817570e

    Article  Google Scholar 

  • Genthon P, Schott J, Dandurand JL (1997) Carbonate diagenesis during thermo-convection: application to secondary porosity generation in clastic reservoirs. Chem Geol 142(1–2):41–61. doi:10.1016/S0009-2541(97)00075-2

    Article  Google Scholar 

  • Gioia SMCL, Pimentel MM, Tessler M, Dantas EL, Campos JEG, Guimarães EM et al (2006) Sources of anthropogenic lead in sediments from an artificial lake in Brasília-central Brazil. Sci Total Environ 356(1–3):125–142. doi:10.1016/j.scitotenv.2005.02.041

    Article  Google Scholar 

  • Glassmeyer ST, Furlong ET, Kolpin DW, Cahill JD, Zaugg SD, Werner SL, Meyer MT, Kryak DD (2005) Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ Sci Technol 39:5157–5169

    Article  Google Scholar 

  • Goodwh PA, West RJ (1997) Evshntion of the ready biodegradability of bisphenol-A using the OECD method 301F: manometric respirometry test (2til “C). Sponsored by the Society of the Plastics Industry, Inc., Wasbingtoq DC

    Google Scholar 

  • Granmo A, Ekelund R, Magnusson K et al (1989) Lethal and sublethal toxicity of 4-nonylphenol to the common mussel (Mytilus-edulis-l). Environ Pollut 59:115–127

    Article  Google Scholar 

  • Grisolia CK, Starling FLRM (2001) Micronuclei monitoring of fishes from Lake Paranoá, under influence of sewage treatment plant discharges. Mutation Res 491:39–44

    Article  Google Scholar 

  • Gros M, Petrović M, Barceló D (2006) Multi-residue analytical methods using LC-tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: a review. Anal Bioanal Chem 386(4):941–952

    Article  Google Scholar 

  • Heberer T, Reddersen K, Mechlinski A (2002) From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Sci Technol J Int Assoc Water Pollut Res 46(3):81–88

    Google Scholar 

  • Henschel KL, Wenzel A, Dietrich M, Fliedner A (1997) Environmental hazard assessment of pharmaceuticals. Regul Toxicol Pharmacol 25:220–225

    Article  Google Scholar 

  • Howard PH (1991) Handbook of environmental degradation rates. Lewis Publishers, Chelsea

    Google Scholar 

  • IETC (1999) Planning and Management of Lakes and Reservoirs: an integrated approach to eutrophication. Technical Publication Series 11. Int Environ Technol Centre UNEP. p 375

  • Jones RA, Lee GF (1982) Recent advances in assessing impact of phosphorus loads on eutrophication-related water quality. Water Res 16(5):503–515

    Article  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales UK. Water Res 42(13):3498–3518. doi:10.1016/j.watres.2008.04.026

    Article  Google Scholar 

  • Kawabata K, Sugihara K, Sanoh S, Kitamura S, Ohta S (2012) Ultraviolet-photoproduct of acetaminophen: structure determination and evaluation of ecotoxicological effect. J Photochem Photobiol A 249:29–35. doi:10.1016/j.jphotochem.2012.07.018

    Article  Google Scholar 

  • Klamerth N, Malato S, Maldonado MI, Agüera A, Fernández-Alba AR (2010) Application of photo-fenton as a tertiary treatment of emerging contaminants in municipal wastewater. Environ Sci Technol 44(5):1792–1798. doi:10.1021/es903455p

    Article  Google Scholar 

  • Klečka G, Staples C, Clark K, Hentges S (2009) Exposure analysis of bisphenol A in surface water systems in North America and Europe. Environ Sci Technol 43:6145–6150

    Article  Google Scholar 

  • Körner W, Bolz U, Süssmuth W, Hiller G, Schuller W, Hanf V, Hagenmaier H (2000) Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere 40:1131–1142

    Article  Google Scholar 

  • Kuch HM, Ballschmitter K (2001) Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol 35:3201–3206

    Article  Google Scholar 

  • Lamparelli MC (2004) Grau de Trofia em Corpos D’Água do Estado de São Paulo:Avaliação dos Métodos de Monitoramento. Thesis (PhD), University of São Paulo

  • Liang DW, Zhang T, Fang HHP, He J (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80(2):183–198. doi:10.1007/s00253-008-1548-5

    Article  Google Scholar 

  • Lindqvist N, Tuhkanen T, Kronberg L (2005) Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res 39(11):2219–2228. doi:10.1016/j.watres.2005.04.003

    Article  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Loos R, Hanke G, Umlauf G, Eisenreich SJ (2007) LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere 66(4):690–699. doi:10.1016/j.chemosphere.2006.07.060

    Article  Google Scholar 

  • Maia PD, Guimarães EM, Moreira RCA, Boaventura GR (2005) Estudo Mineralógico dos Sedimentos de Fundo do Lago Paranoá—DF. Brasil Rev Bras Geociências 35(4):535–541

    Google Scholar 

  • Matsui S, Murakami T, Sasaki T, Hirose Y, Iguma Y (1975) Activated Shulge DegradabihQ of Grgauic Substances in the Wastewater of the Kaabim Petroleum and Petrochemical Indumial Complex iu Japan. Progress Water Technol 7(3/4):645–659

    Google Scholar 

  • Matsui S, Okawa Y, Gta T (1988) Experience of 16 years’ Operation and Maintenance of the Fukashiia Industrial Wastewater Treatment plant of the Kasbima Petrochemical Complex—II. Biodegradation of 37 organic substances and 28 process wastewaters. Water Sci Tech 10:201–210

    Google Scholar 

  • Menezes PHBJ (2010) Avaliação do efeito das ações antrópicas no processo de escoamento superficial e assoreamento na bacia do lago paranoá. Dissertation, University of Brasília

  • Moldovan Z (2006) Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere 64:1808–1817

    Article  Google Scholar 

  • Moreira MA (2010) Avaliação de perturbadores endócrinos em águas do rio das velhas por cromatografia líquida acoplada a espectrometria de massas. Dissertation, Ouro Preto Federal University

  • Morse JW, Arvidson RS (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58:51–84

    Article  Google Scholar 

  • Mozaz SR, de Alda MJL, Barceló D (2004) Monitoring of Estrogens, Pesticides and Bisphenol A in Natural Waters and Drinking Water Treatment Plants by Solid-Phase Extraction-Liquid Chromatography-Mass Spectrometry. J Chromatogr A 1045:85–92

    Article  Google Scholar 

  • Mulholland DS, Boaventura GR, Araújo DF (2012) Geological and anthropogenic influences on sediment metal composition in the upper Paracatu River Basin Brazil. Environ Earth Sci 67(5):1307–1317. doi:10.1007/s12665-012-1574-6

    Article  Google Scholar 

  • Naylor CG, Mieure JP, Adams WJ, Weeks JA, Castaldi FJ, Ogle LD, Romano RR (1992) Alkylphenol ethoxylates in the environment. J Am Oil Chem Soc 69:695–703

  • Olujimi OO, Fatoki OS, Odendaal JP, Daso AP (2012) Chemical monitoring and temporal variation in levels of endocrine disrupting chemicals (priority phenols and phthalate esters) from selected wastewater treatment plant and freshwater systems in Republic of South Africa. Microchem J 101:11–23. doi:10.1016/j.microc.2011.09.011

    Article  Google Scholar 

  • O’Shea L (2002) An economic approach to reducing water pollution: point and diffuse sources. Sci Total Environ 282:49–63

    Article  Google Scholar 

  • Padisák J, Borics G, Grigorszky I, Soróczki-Pintér É (2006) Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553(1):1–14. doi:10.1007/s10750-005-1393-9

    Article  Google Scholar 

  • Padovesi-Fonseca C, Philomeno MG (2004) Effects of algicide (copper sulfate) application on short-term fluctuations of phytoplankton in Lake Paranoá, central Brazil. Braz J Biol 64(4):819–826. doi:10.1590/S1519-69842004000500011

    Article  Google Scholar 

  • Padovesi-Fonseca C, Philomeno MG, Andreoni-Batista C (2009) Limnological features after a flushing event in Paranoá Reservoir, central Brazil. Acta Limnol Brasiliensis 21(3):277–285

    Google Scholar 

  • Panda UC, Sundaray SK, Rath P, Nayak BB, Bhatta D (2006) Application of factor and cluster analysis for characterization of river and estuarine water systems—A case study: mahanadi River (India). J Hydrol 331(3–4):434–445. doi:10.1016/j.jhydrol.2006.05.029

    Article  Google Scholar 

  • Pinto MAT, Cavalcanti CGB (1999) Recuperação de lagos tropicais. Biotecnol Ciencia Desenvolvimento 2(7):30–32

    Google Scholar 

  • Poiger T, Buser HR, Müler MD, Balmer ME, Buerge IJ (2003) Occurrence and fate of organic micropollutants in the environment: regional mass balances and source apportioning in surface waters based on laboratory incubation studies in soil and water, monitoring, and computer modeling. Chimia 9:492–498

    Article  Google Scholar 

  • Portielje R, Molen DT (1999) Relationships between eutrophication variables: from nutrient loading to transparency. Dev Hydrobiol 143:375–387

    Article  Google Scholar 

  • Ribeiro Filho AR, Pereira JMA, P Júnior M, Benassi SF (2013). Eutrophication Indexes Used as Fish Production Parameters in the Itaipu Reservoir (Brazil), 2013 (July), 151–178. doi:10.4236/jep.2013.47A018

  • Richter BD, Mathews R, Harrison DL, Wigington R (2003) Ecologically sustainable water management: managing river flows for ecological integrity. Ecol Appl 13:206–224. doi:10.1890/1051-0761(2003)013[0206:ESWMMR]2.0.CO;2

  • Ryzhakov AV, Kukkonen NA, Lozovik PA (2010) Determination of the rate of ammonification and nitrification in natural water by kinetic method. Water Resour 37(1):70–74

    Article  Google Scholar 

  • Seiler RL, Zaugg SD, Thomas JM, Howcroft DL (1999) Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Ground Water 37(3):405–410. doi:10.1111/j.1745-6584.1999.tb01118.x

    Article  Google Scholar 

  • Simeonov V, Stratis JA, Samara C et al (2003) Assessment of the surface water quality in Northern Greece. Water Res 37(17):4119–4124

    Article  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207

    Article  Google Scholar 

  • Sodré F, Montagner C, Locatelli M, Jardim W (2007) Ocorrência de interferentes endócrinos e produtos farmacêuticos em águas superficiais da região de Campinas (SP, Brasil). J Braz Soc 2(2):187–196

    Google Scholar 

  • Sodré FF, Locatelli MAF, Jardim WF (2009) Occurrence of emerging contaminants in brazilian drinking waters: a Sewage-To-Tap Issue. Water Air Soil Pollut 206(1–4):57–67. doi:10.1007/s11270-009-0086-9

    Google Scholar 

  • Somlyódy I, Altafin I (1992) Management of water resources and eutrophication in the Federal District of Brazil. Water Sci Technol 26(7–8):1813–1822

    Google Scholar 

  • Soto AM, Justica H, Wray JW, Sonnenschein C (1991) Paranonylphenol:an estrogenic xenobiotic released from polystyrene. Environ Health Perspect 92:167–173

    Article  Google Scholar 

  • Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  Google Scholar 

  • Staples CA, Parkerton TF, Peterson DR (2000) A risk assessment of selected phthalate esters in North American and Western European surface waters. Chemosphere 40(8):885–891

    Article  Google Scholar 

  • Steedman HF (1976) Zooplankton fixation and preservation. The Unesco Press, Paris

    Google Scholar 

  • Stuer-Lauridsen F, Birkved M, Hansen LP, Holten-Lützhøft HC, Halling-Sørensen B (2000) Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere 40:783–793

    Article  Google Scholar 

  • Stumpf M, Ternes T, Wilken R (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total 225:135–141

    Article  Google Scholar 

  • Tabata A, Kashiwa S, Ohnishi Y, Ishikawa H, Miyamoto N, Itoh M, Magara Y (2001) Estrogenic influence of estradiol-17h, p-nonylphenol and bisphenol A on Japanese Medaka (Oryzias iatipes) at detected environmental concentrations. Water Sci Technol 43(2):109–16

  • Tan G H (1995) Residue levels of phthalate esters in water and sediment samples from the Klang River basin. Bulletin of Environmental Contamination and Toxicology 54(2):171–6  

  • Tanghe T, Devriese G, Verstraete W (1998) Nonylphenol degradation in lab scale activated sludge units is temperature dependent. Water Res 32:2889–2896

    Article  Google Scholar 

  • Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants–I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225(1–2):81–90

    Article  Google Scholar 

  • Teske SS, Arnold RG (2008) Removal of natural and xenoestrogens during conventional wastewater treatment. Rev Environ Sci Bio Technol 7(2):107–124

    Article  Google Scholar 

  • Toledo Júnior AP et al (1983) Aplicação de modelos simplificados para avaliação de preocesso da eutrofização em lagos e reservatórios tropicais. In Anais...do XII Congresso Brasileiro de Engenharia Sanitária. Associação Brasileira de Engenharia Sanitária e Ambiental. Camboriú - SC, pp 34

  • Toledo AP (1990) Informe preliminar sobre os estudos para obtenção de um índice para avaliação do estado trófico de reservatórios de regiões quentes tropicais. CESTEB, São Paulo—SP 12p. (Relatório Interno)

  • UNEP IETC (1999) Planning and management of lakes and reservoirs : an integrated approach to eutrophication. UNEP International Environmental Technology Centre, Osaka, Japan, pp 375

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteillungen der Internationalen Vereinigung fu¨r Theoretische und Angewandte Limnologie 9:1–38

  • Vieno NM, Tuhkanen T, Kronberg L (2005) Seasonal variation in the occurrence of pharmaceu- ticals in effluents from a sewage treatment plant and in the recipient water. Environ Sci Technol 39:8220–8226

    Article  Google Scholar 

  • Von Sperling E (1994) Avaliação do estado trófico de lagos e reservatórios tropicais. Bio Revista Engenharia Sanitária 3:68–76

    Google Scholar 

  • Voudouris K, Lambrakis N, Papatheodorou G, Daskalaki P (1997) An application of factor analysis for the study of the hydrogeological conditions in plio-pleistocene aquifers of NW achaia (NW Peloponnesus, Greece). Math Geol 29(1):43–59

    Article  Google Scholar 

  • Watson SW, Valos FW, Waterbury JB (1981) The Family Nitrobacteraceae. In Starr et al (eds) The Prokaryotes, pp 1005–1022. doi:10.1007/978-3-662-13187-9

  • Wu RSS (1999) Eutrophication, water borne pathogens and xenobiotic compounds: environmental risks and challenges. Mar Pollut Bull 39(1–12):11–22

    Article  Google Scholar 

  • Xu H, Paerl HW, Qin B, Zhu G, Gaoa G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu China. Limnol Oceanogr 55(1):420–432

    Article  Google Scholar 

  • Yang Z, Wang Y, Shen Z, Niu J, Tang Z (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan China. J Hazardous Materials 166(2–3):1186–1194. doi:10.1016/j.jhazmat.2008.12.034

    Article  Google Scholar 

  • Zhu S, Chen H, Li J (2013) Ecotoxicology and environmental safety sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan Lake basin, Eastern China. Ecotoxicol Environ Saf 96:154–159. doi:10.1016/j.ecoenv.2013.06.033

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CNPQ for the financial support and CAPES for providing a MSc. grant. Alexandre Moraes de Carvalho and CAESB are acknowledged for providing some of the data used herein. We also would like to thank José Eloi Campos for his helpful review on data discussion and to Instituto Evandro Chagas for analytical support. Timothy Mulholland is thanked for a final correction on the grammar of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normara Yane Mar da Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mar da Costa, N.Y., Boaventura, G.R., Mulholland, D.S. et al. Biogeochemical mechanisms controlling trophic state and micropollutant concentrations in a tropical artificial lake. Environ Earth Sci 75, 854 (2016). https://doi.org/10.1007/s12665-016-5629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5629-y

Keywords

Navigation