The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks | Environmental Earth Sciences Skip to main content

Advertisement

Log in

The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study presented herein compares the effect of the sampling strategies by means of landslide inventory on the landslide susceptibility mapping. The conditional probability (CP) and artificial neural networks (ANN) models were applied in Sebinkarahisar (Giresun–Turkey). Digital elevation model was first constructed using a geographical information system software and parameter maps affecting the slope stability such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index, stream power index and normalized difference vegetation index were considered. In the last stage of the analyses, landslide susceptibility maps were produced applying different sampling strategies such as; scarp, seed cell and point. The maps elaborated were then compared by means of their validations. Scarp sampling strategy gave the best results than the point, whereas the scarp and seed cell methods can be evaluated relatively similar. Comparison of the landslide susceptibility maps with known landslide locations indicated that the higher accuracy was obtained for ANN model using the scarp sampling strategy. The results obtained in this study also showed that the CP model can be used as a simple tool in assessment of the landslide susceptibility, because input process, calculations and output process are very simple and can be readily understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akman AÜ, Tüfekçi K (2004) Determination and characterization of fault systems and geomorphological features by Rs and Gis techniques in the WSW part of Turkey. XXth ISPRS Congress, Istanbul, pp 899–904

  • Aleotti P, Baldelli P, Polloni G, Puma F (1998) Keynote paper: different approaches to landslide hazard assessment. In: Proceedings of the second conference environment management (ICEM-2), Wollongong (Australia), 1:3–10

  • Altıner Y, Habrich H, Kahveci M, Kurt M, Salk M, Seeger H (1997) GPS measurements in western Turkey from 1992 to 1994. International Symposium on GIS/GPS, Istanbul

  • ArcGIS (Version 9.1) (2005) Integrated Geographical information system software, ESRI

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Appenines Italy. Comput Geosci 24(4):373–385. doi:10.1016/S0098-3004(97)00117-9

    Article  Google Scholar 

  • Baeza C (1994) Evaluación de las condiciones de rotura y la movilidad de los deslizamientos superficiales mediante el uso de técnicas de análisis multivariante. Tesis Univ. Pol, Catalunya

    Google Scholar 

  • Barka AA, Gülen L (1988) New constraints on age and total offset of the North Anatolian Fault Zone: implications for tectonics of the eastern Mediterranean region. METU J Pure Appl Sci 21(1–3):39–63

    Google Scholar 

  • Barredo JJ, Benavides A, Hervas J, Van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Trijana basin, Gran Canaria Island, Spain. JAG 2(1):9–23

    Google Scholar 

  • Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3–31. doi:10.1016/S0167-7012(00)00201-3

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Brabb EE, Pampeyan EH, Bonilla M (1972) Landslide susceptibility in the San Mateo County, California, scale 1 : 62.500, US Geol Survey Misc Field Studies Map MF344

  • Burt T, Butcher D (1986) Stimulation from simulation—a teaching model of hillslope hydrology for use on microcomputers. J Geography Higher Educ 10:23–39. doi:10.1080/03098268608708953

    Article  Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–426. doi:10.1007/BF01031290

    Article  Google Scholar 

  • Carrara A, Cardinalli M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statitistical models in evaluating landslide hazards. Earth Surf Proc Land 16:427–445. doi:10.1002/esp.3290160505

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Eart Surf Processes Landf 28:1125–1142. doi:10.1002/esp.545

    Article  Google Scholar 

  • Cascini L, Critelli S, Gulla G, Di Nocera S (1991) A methodological approach to landslide hazard assessment: a case history. In: Proceedings 16th international landslide conference, Balkema, Rotterdam, pp 899–904

  • Chacón J, Irigaray C, Fernández T (1994) Large to middle scale landslide inventory, analysis and mapping with modelling and assessment of derived susceptibility, hazards and risks in a GIS. In: Proceedings of 7th IAEG Congress, Balkema, Rotterdam, Holland, pp 4669–4678

  • Chacón J, Irigaray C, Fernández T (1996) From the inventory to the risk analysis: improvements to a large scale GIS method. In: Chacón J, Irigaray C, Fernández T (eds) Proceedings of 8th International conference and field workshop on landslides. Balkema, Rotterdam, Holland, pp 335–342

    Google Scholar 

  • Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analiysis for landslide hazard zonalition. In: Carrara A, Guzetti F (eds) Geographical information’s systems in assessing natural hazards. Kluwer, Dordrecht

    Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364. doi:10.1016/S0169-555X(02)00079-X

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2006) A GIS-based automated procedure for landslide susceptibility mapping by the conditional analysis method: the Baganza valley case study (Italian Northern Apennines). Environ Geol 50(7):941–961. doi:10.1007/s00254-006-0264-7

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28:527–545. doi:10.1002/esp.456

    Article  Google Scholar 

  • Dai FC, Lee CF, Zhang XH (2001) GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 61:257–271. doi:10.1016/S0013-7952(01)00028-X

    Article  Google Scholar 

  • DeGraff J, Romesburg H (1980) Regional landslide-susceptibility assessment for wildland management: a matrix approach. In: Coates D, Vitek J (eds) Thresholds in geomorphology. George Allen and Unwin, London, pp 401–414

    Google Scholar 

  • Dewey JF, Şengör AMC (1979) Aegean and surroundings regions: complex multiple and continuum tectonics in a convergent zone. Geol Soc Am Bull 90:84–92. doi:10.1130/0016-7606(1979)90<84:AASRCM>2.0.CO;2

    Article  Google Scholar 

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA (2005) Landslide susceptibility mapping of Cekmece Area (Istanbul, Turkey) by conditional probability. Hydrol Earth Syst Sci Discuss 2:155–208

    Google Scholar 

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51(2):241–256. doi:10.1007/s00254-006-0322-1

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West lack Sea Region, Turkey). Eng Geol 75:229–250. doi:10.1016/j.enggeo.2004.06.001

    Article  Google Scholar 

  • Fernández T, Irigaray C, Hamdouni RE, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain). Nat Hazards 30:297–308. doi:10.1023/B:NHAZ.0000007092.51910.3f

    Article  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing technique. Eng Geol 44:147–161. doi:10.1016/S0013-7952(97)81260-4

    Article  Google Scholar 

  • Gomez HR (2002) Modeling landslide potential in the Venezuelan Andes. PhD Thesis, The University of Nottingham, School of Geography, 272 p (unpublished)

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27. doi:10.1016/j.enggeo.2004.10.004

    Article  Google Scholar 

  • Hall FG, Townshend JR, Engman ET (1995) Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sens Environ 51:138–156. doi:10.1016/0034-4257(94)00071-T

    Article  Google Scholar 

  • Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the first IEEE international conference on neural networks. San Diego, CA, USA, pp 11–14

  • Irigaray C (1995) Movimientos de ladera: inventoria, analisis y cartografaa de susceptibilidad mediante un Sistema de Informacion Geografica. Aplicacion a las zonas de Colmenar (Ma), Rute (Co) y Montefrio (Gr). Thesis Doctoral, University Granada

  • Ives JD, Messerli B (1981) Mountain hazard mapping in Nepal: introduction to an applied mountain research project. Mt Res Dev 1(3–4):223–230. doi:10.2307/3673059

    Article  Google Scholar 

  • Jade S, Sarkar S (1993) Statistical models for slope instability classification. Eng Geol 36:91–98. doi:10.1016/0013-7952(93)90021-4

    Article  Google Scholar 

  • Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Comput IEEE March 3:1–44

    Google Scholar 

  • Kavzoglu T (2001) An investigation of the design and use of feed-forward artificial neural networks in the classification of remotely sensed images. PhD Thesis, University of Nottingham, School of Geography, 306 pp

  • Koçyiğit A (1989) Suşehri basin: an activa fault-wedge basin on the North Anatolian Fault Zone, Turkey. Tectonophysics 167:13–29. doi:10.1016/0040-1951(89)90291-6

    Article  Google Scholar 

  • Koçyiğit A, Özacar AA (2003) Extensional neotectonic regime through the NE edge of the outer Isparta Angle, SW Turkey: new field and seismic data. Turkish J Earth Sci 12:67–90

    Google Scholar 

  • Lee S, Min K (2001) Statistical analyses of landslide susceptibility at Yongin. Korea Environ Geol 40:1095–1113. doi:10.1007/s002540100310

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990. doi:10.1007/s00254-005-1228-z

    Article  Google Scholar 

  • Lee S, Ryu JH, Min K, Won JS (2003a) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Process Landf 27:1361–1376. doi:10.1002/esp.593

    Article  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2003b) Landslide susceptibility analysis using artificial neural network at Boun, Korea. Environ Geol 44:820–833. doi:10.1007/s00254-003-0825-y

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping: using an artificial neural network. Eng Geol 71:289–302. doi:10.1016/S0013-7952(03)00142-X

    Article  Google Scholar 

  • Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22. doi:10.1109/MASSP.1987.1165576

  • Mahiny AS, Turner BJ (2003) Modeling past vegetation change through remote sensing and GIS: a comparison of neural networks and logistic regression methods. In: Proceedings of the 7th international conference on geocomputation. University of Southampton, UK

  • Manel S, Dias JM, Ormerod SJ (1999) Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with Himalayan river bird. Ecol Model 120:337–347. doi:10.1016/S0304-3800(99)00113-1

    Article  Google Scholar 

  • McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J R Astr Soc 30:109–185

    Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling—a review of hydro- hydrological, geomorphological, and biological applications. Hydrol Processes 5:3–30. doi:10.1002/hyp.3360050103

    Article  Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191. doi:10.1016/j.enggeo.2008.01.004

    Article  Google Scholar 

  • Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Addison-Wesley, Great Britain, 394 p

  • Oral B, Reilenger R, Toksöz NM, King R, Barka A, Kınık I, Lenk O (1995) Coherent plate motion in the eastern Mediterranean continental collision zone. EOS, January, 1–3

  • Ottenbacher KJ, Smith PM, Illig SB, Linn RT, Fiedler RC, Granger CV (2001) Comparison of logistic regression and neural networks to predict rehospitalization in patients with stroke. J Clin Epidemiol 54:1159–1165. doi:10.1016/S0895-4356(01)00395-X

    Article  Google Scholar 

  • Pistocchi A, Luzi L, Napolitano P (2002) The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods. Environ Geol 41:765–775. doi:10.1007/s002540100440

    Article  Google Scholar 

  • Reilenger R (2002) GPS applications to earthquake mechanics and seismic hazard studies: The 1999, M7,6 İzmit Earthquake. 4th international Turkish geological symposium abstracts, 338, Adana

  • Remondo J, Gonzalez-Diez A, Teran JRD, Cendrero A (2003) Landslide susceptibility models utilising spatial data analysis techniques: a case study from the lower Deba Valley, Guipúzcoa (Spain). Nat Hazards 30:267–279. doi:10.1023/B:NHAZ.0000007202.12543.3a

    Article  Google Scholar 

  • Rengers N, van Westen CJ, Chacón J, Irigaray C (1998) Draft for the chapter on the application of digital techniques for natural hazard zonation. Report on mapping of natural hazards, international association of engineering geology. Commission No. 1 on engineering geological mapping

  • Rodhe A, Seibert J (1999) Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agric For Meteorol 98–99:325–340. doi:10.1016/S0168-1923(99)00104-5

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing. vol 1. pp 318–362

  • Rupke J, Cammeraat E, Seijmonsbergen AC, Van Westen CJ (1988) Engineering geomorphology of the Widentobel catchment, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of the slope stability. Eng Geol 26:33–68. doi:10.1016/0013-7952(88)90005-1

    Article  Google Scholar 

  • Santacana N, Baeza B, Corominas J, Paz A, Marturia J (2003) A GIS based multivariate statistical analysis for shallow landslide susceptibility mapping in la pobla de lillet area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295. doi:10.1023/B:NHAZ.0000007169.28860.80

    Article  Google Scholar 

  • Schumacher M, Robner R, Vach W (1996) Neural networks and logistic regression: part I. Comput Stat Data Anal 21:661–682. doi:10.1016/0167-9473(95)00032-1

    Article  Google Scholar 

  • Seibert J, Bishop KH, Nyberg L (1997) A test of TOPMODEL’s ability to predict spatially distributed groundwater levels. Hydrol Processes 11:1131–1144. doi:10.1002/(SICI)1099-1085(199707)11:9<1131::AID-HYP549>3.0.CO;2-#

    Article  Google Scholar 

  • Şengör AMC (1980) Mesozoic-Cenozoic tectonic evolution of Anatolia and surrounding regions, Abstract. Bull Bur Rech Geol Minieres France 11:5–137

    Google Scholar 

  • Simpson PK (1990) Artificial neural system-foundation, paradigm, application and implementation. Pergamon Press, New York

    Google Scholar 

  • Singh TN, Kanchan R, Verma AK, Singh S (2003) An intelligent approach for prediction of triaxial properties using unconfined uniaxial strength. Min Eng J 5(4):12–16

    Google Scholar 

  • Suzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321. doi:10.1016/S0013-7952(03)00143-1

    Article  Google Scholar 

  • Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11):1225–1231. doi:10.1016/S0895-4356(96)00002-9

    Article  Google Scholar 

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G,Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410

    Article  Google Scholar 

  • Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. PhD Dissertation Technical University Delft. ITCPublication Number 15, ITC, Enschede, The Netherlands, 245 p

  • Van Westen CJ, Lulie GF (2003) Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 54(1–2):77–89. doi:10.1016/S0169-555X(03)00057-6

    Google Scholar 

  • Van Westen CJ, Soeters R, Sijmons K (2000) Digital geomorphological landslide hazard mapping of the Alpago area, Italy. Int J Appl Earth Observ Geoinform 2(1):51–59. doi:10.1016/S0303-2434(00)85026-6

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement, types and processes. In: Schuster RL, Krizek, RJ (eds) Landslides, analyses and control. National Academy of Science, Report 176, Washington DC, pp 11–35

  • Ward T, Ruh-Ming L, Simons D (1982) Mapping landslide hazard in forest watershed. J Geotech Eng Div 108(2):319–324

    Google Scholar 

  • Weier J, Herring D (2005) Measuring vegetation (NDVI and EVI). Earth Observatory Library of NASA, http://earthobservatory.nasa.gov/Library/MeasuringVegetation/

  • Yesilnacar E, Hunter GJ (2004) Application of neural networks for landslide susceptibility mapping in Turkey. İn: van Leeuwen JP, Timmermans HJP (eds) Recent advances in design and decision support systems in architecture and urban planning, pp 3–18

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79:251–266. doi:10.1016/j.enggeo.2005.02.002

    Article  Google Scholar 

  • Yilmaz I (2007) GIS based susceptibility mapping of karst depression in gypsum: a case study from Sivas basin (Turkey). Eng Geol 90(1–2):89–103. doi:10.1016/j.enggeo.2006.12.004

    Article  Google Scholar 

  • Yilmaz I (2008a) A case study for mapping of spatial distribution of free surface heave in alluvial soils (Yalova, Turkey) by using GIS software. Comput Geosci 34(8):993–1004. doi:10.1016/j.cageo.2007.06.008

    Article  Google Scholar 

  • Yilmaz I (2008b) A case study from Koyulhisar (Sivas–Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ. doi:10.1007/s10064-009-0185-2

  • Yilmaz I (2008c) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat–Turkey). Comput Geosci 35(6):1125–1138

    Google Scholar 

  • Yilmaz I, Bagci A (2006) Soil liquefaction susceptibility and hazard mapping in the residential area of Kütahya (Turkey). Environ Geol 49(5):708–719. doi:10.1007/s00254-005-0112-1

    Article  Google Scholar 

  • Yilmaz I, Yildirim M (2006) Structural and geomorphological aspects of the Kat landslides (Tokat-Turkey), and susceptibility mapping by means of GIS. Environ Geol 50(4):461–472. doi:10.1007/s00254-005-0107-y

    Article  Google Scholar 

  • Yilmaz I, Yüksek AG (2008) An example of artificial neural network application for indirect estimation of rock parameters. Rock Mech Rock Eng 41(5):781–795. doi:10.1007/s00603-007-0138-7

    Article  Google Scholar 

  • Yilmaz I, Yüksek AG (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, ANFIS models and their comparison. Int J Rock Mech Min Sci 46(4):803–810. doi:10.1016/j.ijrmms.2008.09.002

    Article  Google Scholar 

  • Yilmaz A, Oral A, Bilgiç T (1985) Yukarı Kelkit çayı yöresi ve güneyinin temel jeoloji özellikleri ve sonuçları. MTA Report (in Turkish)

  • Yilmaz I, Ekemen T, Yildirim M, Keskin I, Özdemir G (2006) Failure and flow development of a collapse induced complex landslide: the 2005 Kuzulu (Koyulhisar–Turkey) landslide hazard. Environ Geol 49(3):467–476. doi:10.1007/s00254-005-0113-0

    Article  Google Scholar 

  • Zinko U, Seibert J, Dynesius M, Nilsson C (2005) Plant species numbers predicted by a topography based groundwater-flow index. Ecosystems 8:430–441. doi:10.1007/s10021-003-0125-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Işık Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, I. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environ Earth Sci 60, 505–519 (2010). https://doi.org/10.1007/s12665-009-0191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0191-5

Keywords

Navigation