Abstract
This study presented herein compares the effect of the sampling strategies by means of landslide inventory on the landslide susceptibility mapping. The conditional probability (CP) and artificial neural networks (ANN) models were applied in Sebinkarahisar (Giresun–Turkey). Digital elevation model was first constructed using a geographical information system software and parameter maps affecting the slope stability such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index, stream power index and normalized difference vegetation index were considered. In the last stage of the analyses, landslide susceptibility maps were produced applying different sampling strategies such as; scarp, seed cell and point. The maps elaborated were then compared by means of their validations. Scarp sampling strategy gave the best results than the point, whereas the scarp and seed cell methods can be evaluated relatively similar. Comparison of the landslide susceptibility maps with known landslide locations indicated that the higher accuracy was obtained for ANN model using the scarp sampling strategy. The results obtained in this study also showed that the CP model can be used as a simple tool in assessment of the landslide susceptibility, because input process, calculations and output process are very simple and can be readily understood.
Similar content being viewed by others
References
Akman AÜ, Tüfekçi K (2004) Determination and characterization of fault systems and geomorphological features by Rs and Gis techniques in the WSW part of Turkey. XXth ISPRS Congress, Istanbul, pp 899–904
Aleotti P, Baldelli P, Polloni G, Puma F (1998) Keynote paper: different approaches to landslide hazard assessment. In: Proceedings of the second conference environment management (ICEM-2), Wollongong (Australia), 1:3–10
Altıner Y, Habrich H, Kahveci M, Kurt M, Salk M, Seeger H (1997) GPS measurements in western Turkey from 1992 to 1994. International Symposium on GIS/GPS, Istanbul
ArcGIS (Version 9.1) (2005) Integrated Geographical information system software, ESRI
Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Appenines Italy. Comput Geosci 24(4):373–385. doi:10.1016/S0098-3004(97)00117-9
Baeza C (1994) Evaluación de las condiciones de rotura y la movilidad de los deslizamientos superficiales mediante el uso de técnicas de análisis multivariante. Tesis Univ. Pol, Catalunya
Barka AA, Gülen L (1988) New constraints on age and total offset of the North Anatolian Fault Zone: implications for tectonics of the eastern Mediterranean region. METU J Pure Appl Sci 21(1–3):39–63
Barredo JJ, Benavides A, Hervas J, Van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Trijana basin, Gran Canaria Island, Spain. JAG 2(1):9–23
Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3–31. doi:10.1016/S0167-7012(00)00201-3
Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69
Brabb EE, Pampeyan EH, Bonilla M (1972) Landslide susceptibility in the San Mateo County, California, scale 1 : 62.500, US Geol Survey Misc Field Studies Map MF344
Burt T, Butcher D (1986) Stimulation from simulation—a teaching model of hillslope hydrology for use on microcomputers. J Geography Higher Educ 10:23–39. doi:10.1080/03098268608708953
Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–426. doi:10.1007/BF01031290
Carrara A, Cardinalli M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statitistical models in evaluating landslide hazards. Earth Surf Proc Land 16:427–445. doi:10.1002/esp.3290160505
Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Eart Surf Processes Landf 28:1125–1142. doi:10.1002/esp.545
Cascini L, Critelli S, Gulla G, Di Nocera S (1991) A methodological approach to landslide hazard assessment: a case history. In: Proceedings 16th international landslide conference, Balkema, Rotterdam, pp 899–904
Chacón J, Irigaray C, Fernández T (1994) Large to middle scale landslide inventory, analysis and mapping with modelling and assessment of derived susceptibility, hazards and risks in a GIS. In: Proceedings of 7th IAEG Congress, Balkema, Rotterdam, Holland, pp 4669–4678
Chacón J, Irigaray C, Fernández T (1996) From the inventory to the risk analysis: improvements to a large scale GIS method. In: Chacón J, Irigaray C, Fernández T (eds) Proceedings of 8th International conference and field workshop on landslides. Balkema, Rotterdam, Holland, pp 335–342
Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Eng Remote Sens 65(12):1389–1399
Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analiysis for landslide hazard zonalition. In: Carrara A, Guzetti F (eds) Geographical information’s systems in assessing natural hazards. Kluwer, Dordrecht
Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364. doi:10.1016/S0169-555X(02)00079-X
Clerici A, Perego S, Tellini C, Vescovi P (2006) A GIS-based automated procedure for landslide susceptibility mapping by the conditional analysis method: the Baganza valley case study (Italian Northern Apennines). Environ Geol 50(7):941–961. doi:10.1007/s00254-006-0264-7
Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28:527–545. doi:10.1002/esp.456
Dai FC, Lee CF, Zhang XH (2001) GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 61:257–271. doi:10.1016/S0013-7952(01)00028-X
DeGraff J, Romesburg H (1980) Regional landslide-susceptibility assessment for wildland management: a matrix approach. In: Coates D, Vitek J (eds) Thresholds in geomorphology. George Allen and Unwin, London, pp 401–414
Dewey JF, Şengör AMC (1979) Aegean and surroundings regions: complex multiple and continuum tectonics in a convergent zone. Geol Soc Am Bull 90:84–92. doi:10.1130/0016-7606(1979)90<84:AASRCM>2.0.CO;2
Duman TY, Can T, Gokceoglu C, Nefeslioglu HA (2005) Landslide susceptibility mapping of Cekmece Area (Istanbul, Turkey) by conditional probability. Hydrol Earth Syst Sci Discuss 2:155–208
Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51(2):241–256. doi:10.1007/s00254-006-0322-1
Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West lack Sea Region, Turkey). Eng Geol 75:229–250. doi:10.1016/j.enggeo.2004.06.001
Fernández T, Irigaray C, Hamdouni RE, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain). Nat Hazards 30:297–308. doi:10.1023/B:NHAZ.0000007092.51910.3f
Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing technique. Eng Geol 44:147–161. doi:10.1016/S0013-7952(97)81260-4
Gomez HR (2002) Modeling landslide potential in the Venezuelan Andes. PhD Thesis, The University of Nottingham, School of Geography, 272 p (unpublished)
Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27. doi:10.1016/j.enggeo.2004.10.004
Hall FG, Townshend JR, Engman ET (1995) Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sens Environ 51:138–156. doi:10.1016/0034-4257(94)00071-T
Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the first IEEE international conference on neural networks. San Diego, CA, USA, pp 11–14
Irigaray C (1995) Movimientos de ladera: inventoria, analisis y cartografaa de susceptibilidad mediante un Sistema de Informacion Geografica. Aplicacion a las zonas de Colmenar (Ma), Rute (Co) y Montefrio (Gr). Thesis Doctoral, University Granada
Ives JD, Messerli B (1981) Mountain hazard mapping in Nepal: introduction to an applied mountain research project. Mt Res Dev 1(3–4):223–230. doi:10.2307/3673059
Jade S, Sarkar S (1993) Statistical models for slope instability classification. Eng Geol 36:91–98. doi:10.1016/0013-7952(93)90021-4
Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Comput IEEE March 3:1–44
Kavzoglu T (2001) An investigation of the design and use of feed-forward artificial neural networks in the classification of remotely sensed images. PhD Thesis, University of Nottingham, School of Geography, 306 pp
Koçyiğit A (1989) Suşehri basin: an activa fault-wedge basin on the North Anatolian Fault Zone, Turkey. Tectonophysics 167:13–29. doi:10.1016/0040-1951(89)90291-6
Koçyiğit A, Özacar AA (2003) Extensional neotectonic regime through the NE edge of the outer Isparta Angle, SW Turkey: new field and seismic data. Turkish J Earth Sci 12:67–90
Lee S, Min K (2001) Statistical analyses of landslide susceptibility at Yongin. Korea Environ Geol 40:1095–1113. doi:10.1007/s002540100310
Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990. doi:10.1007/s00254-005-1228-z
Lee S, Ryu JH, Min K, Won JS (2003a) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Process Landf 27:1361–1376. doi:10.1002/esp.593
Lee S, Ryu JH, Lee MJ, Won JS (2003b) Landslide susceptibility analysis using artificial neural network at Boun, Korea. Environ Geol 44:820–833. doi:10.1007/s00254-003-0825-y
Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping: using an artificial neural network. Eng Geol 71:289–302. doi:10.1016/S0013-7952(03)00142-X
Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22. doi:10.1109/MASSP.1987.1165576
Mahiny AS, Turner BJ (2003) Modeling past vegetation change through remote sensing and GIS: a comparison of neural networks and logistic regression methods. In: Proceedings of the 7th international conference on geocomputation. University of Southampton, UK
Manel S, Dias JM, Ormerod SJ (1999) Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with Himalayan river bird. Ecol Model 120:337–347. doi:10.1016/S0304-3800(99)00113-1
McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J R Astr Soc 30:109–185
Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling—a review of hydro- hydrological, geomorphological, and biological applications. Hydrol Processes 5:3–30. doi:10.1002/hyp.3360050103
Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191. doi:10.1016/j.enggeo.2008.01.004
Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Addison-Wesley, Great Britain, 394 p
Oral B, Reilenger R, Toksöz NM, King R, Barka A, Kınık I, Lenk O (1995) Coherent plate motion in the eastern Mediterranean continental collision zone. EOS, January, 1–3
Ottenbacher KJ, Smith PM, Illig SB, Linn RT, Fiedler RC, Granger CV (2001) Comparison of logistic regression and neural networks to predict rehospitalization in patients with stroke. J Clin Epidemiol 54:1159–1165. doi:10.1016/S0895-4356(01)00395-X
Pistocchi A, Luzi L, Napolitano P (2002) The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods. Environ Geol 41:765–775. doi:10.1007/s002540100440
Reilenger R (2002) GPS applications to earthquake mechanics and seismic hazard studies: The 1999, M7,6 İzmit Earthquake. 4th international Turkish geological symposium abstracts, 338, Adana
Remondo J, Gonzalez-Diez A, Teran JRD, Cendrero A (2003) Landslide susceptibility models utilising spatial data analysis techniques: a case study from the lower Deba Valley, Guipúzcoa (Spain). Nat Hazards 30:267–279. doi:10.1023/B:NHAZ.0000007202.12543.3a
Rengers N, van Westen CJ, Chacón J, Irigaray C (1998) Draft for the chapter on the application of digital techniques for natural hazard zonation. Report on mapping of natural hazards, international association of engineering geology. Commission No. 1 on engineering geological mapping
Rodhe A, Seibert J (1999) Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agric For Meteorol 98–99:325–340. doi:10.1016/S0168-1923(99)00104-5
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing. vol 1. pp 318–362
Rupke J, Cammeraat E, Seijmonsbergen AC, Van Westen CJ (1988) Engineering geomorphology of the Widentobel catchment, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of the slope stability. Eng Geol 26:33–68. doi:10.1016/0013-7952(88)90005-1
Santacana N, Baeza B, Corominas J, Paz A, Marturia J (2003) A GIS based multivariate statistical analysis for shallow landslide susceptibility mapping in la pobla de lillet area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295. doi:10.1023/B:NHAZ.0000007169.28860.80
Schumacher M, Robner R, Vach W (1996) Neural networks and logistic regression: part I. Comput Stat Data Anal 21:661–682. doi:10.1016/0167-9473(95)00032-1
Seibert J, Bishop KH, Nyberg L (1997) A test of TOPMODEL’s ability to predict spatially distributed groundwater levels. Hydrol Processes 11:1131–1144. doi:10.1002/(SICI)1099-1085(199707)11:9<1131::AID-HYP549>3.0.CO;2-#
Şengör AMC (1980) Mesozoic-Cenozoic tectonic evolution of Anatolia and surrounding regions, Abstract. Bull Bur Rech Geol Minieres France 11:5–137
Simpson PK (1990) Artificial neural system-foundation, paradigm, application and implementation. Pergamon Press, New York
Singh TN, Kanchan R, Verma AK, Singh S (2003) An intelligent approach for prediction of triaxial properties using unconfined uniaxial strength. Min Eng J 5(4):12–16
Suzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321. doi:10.1016/S0013-7952(03)00143-1
Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11):1225–1231. doi:10.1016/S0895-4356(96)00002-9
Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G,Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410
Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. PhD Dissertation Technical University Delft. ITCPublication Number 15, ITC, Enschede, The Netherlands, 245 p
Van Westen CJ, Lulie GF (2003) Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 54(1–2):77–89. doi:10.1016/S0169-555X(03)00057-6
Van Westen CJ, Soeters R, Sijmons K (2000) Digital geomorphological landslide hazard mapping of the Alpago area, Italy. Int J Appl Earth Observ Geoinform 2(1):51–59. doi:10.1016/S0303-2434(00)85026-6
Varnes DJ (1978) Slope movement, types and processes. In: Schuster RL, Krizek, RJ (eds) Landslides, analyses and control. National Academy of Science, Report 176, Washington DC, pp 11–35
Ward T, Ruh-Ming L, Simons D (1982) Mapping landslide hazard in forest watershed. J Geotech Eng Div 108(2):319–324
Weier J, Herring D (2005) Measuring vegetation (NDVI and EVI). Earth Observatory Library of NASA, http://earthobservatory.nasa.gov/Library/MeasuringVegetation/
Yesilnacar E, Hunter GJ (2004) Application of neural networks for landslide susceptibility mapping in Turkey. İn: van Leeuwen JP, Timmermans HJP (eds) Recent advances in design and decision support systems in architecture and urban planning, pp 3–18
Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79:251–266. doi:10.1016/j.enggeo.2005.02.002
Yilmaz I (2007) GIS based susceptibility mapping of karst depression in gypsum: a case study from Sivas basin (Turkey). Eng Geol 90(1–2):89–103. doi:10.1016/j.enggeo.2006.12.004
Yilmaz I (2008a) A case study for mapping of spatial distribution of free surface heave in alluvial soils (Yalova, Turkey) by using GIS software. Comput Geosci 34(8):993–1004. doi:10.1016/j.cageo.2007.06.008
Yilmaz I (2008b) A case study from Koyulhisar (Sivas–Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ. doi:10.1007/s10064-009-0185-2
Yilmaz I (2008c) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat–Turkey). Comput Geosci 35(6):1125–1138
Yilmaz I, Bagci A (2006) Soil liquefaction susceptibility and hazard mapping in the residential area of Kütahya (Turkey). Environ Geol 49(5):708–719. doi:10.1007/s00254-005-0112-1
Yilmaz I, Yildirim M (2006) Structural and geomorphological aspects of the Kat landslides (Tokat-Turkey), and susceptibility mapping by means of GIS. Environ Geol 50(4):461–472. doi:10.1007/s00254-005-0107-y
Yilmaz I, Yüksek AG (2008) An example of artificial neural network application for indirect estimation of rock parameters. Rock Mech Rock Eng 41(5):781–795. doi:10.1007/s00603-007-0138-7
Yilmaz I, Yüksek AG (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, ANFIS models and their comparison. Int J Rock Mech Min Sci 46(4):803–810. doi:10.1016/j.ijrmms.2008.09.002
Yilmaz A, Oral A, Bilgiç T (1985) Yukarı Kelkit çayı yöresi ve güneyinin temel jeoloji özellikleri ve sonuçları. MTA Report (in Turkish)
Yilmaz I, Ekemen T, Yildirim M, Keskin I, Özdemir G (2006) Failure and flow development of a collapse induced complex landslide: the 2005 Kuzulu (Koyulhisar–Turkey) landslide hazard. Environ Geol 49(3):467–476. doi:10.1007/s00254-005-0113-0
Zinko U, Seibert J, Dynesius M, Nilsson C (2005) Plant species numbers predicted by a topography based groundwater-flow index. Ecosystems 8:430–441. doi:10.1007/s10021-003-0125-0
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yilmaz, I. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environ Earth Sci 60, 505–519 (2010). https://doi.org/10.1007/s12665-009-0191-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12665-009-0191-5