NOCD: a new overlapping community detection algorithm based on improved KNN | Journal of Ambient Intelligence and Humanized Computing Skip to main content
Log in

NOCD: a new overlapping community detection algorithm based on improved KNN

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

In social networks, the community detection algorithm is very important for understanding the structures and the functions of these networks. A lot of researches have been done on the overlapping community detection algorithms as the overlapping is a significant feature of such networks. However, though many algorithms have been introduced to detect overlapping communities, the detection of the overlapping community is still a challenging task. In fact, the traditional static methods which partitioned the network structure could not efficiently obtain the latest community structure. The problems of high computational complexity and low identification accuracy need to be solved. To address these issues, in this paper, we propose a New Overlapping Community Detection algorithm based on improved KNN (called NOCD), which can timely adjust the community structure based on different network changes, and ultimately obtains the results of the community partitions with a high degree of Q module. To deal with the weighted social networks, NOCD adopts similarity instead of distance to evaluate the network. The experimental results show that the proposed NOCD algorithm compared with the COPRA, the CPM, the DeCom, the PLPA, and the AI-LPA algorithms can effectively improve the detection accuracy, the efficiency of parallel computing, and reduce the time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability statement

The LFR (Lancichinetti-Fortunato-Radicchi) model introduced in [36] is the most widely used synthetic benchmark for the comparison of community detection algorithms.

References

  • Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761–764

    Article  Google Scholar 

  • Ball B, Karrer B, Newman ME (2011) Efficient and principled method for detecting communities in networks. Phys Rev E 84(3):036103

    Article  Google Scholar 

  • Bhatia V, Rani R (2019) A distributed overlapping community detection model for large graphs using autoencoder. Fut Gen Comput Syst 94:16–26

    Article  Google Scholar 

  • Blondel VD, Guillaume JL, Lambiotte R et al (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008

    Article  Google Scholar 

  • Bu Z, Wu Z, Cao J et al (2015) Local community mining on distributed and dynamic networks from a multiagent perspective. IEEE Trans Cybern 46(4):986–999

    Article  Google Scholar 

  • Clauset A (2005) Finding local community structure in networks. Phys Rev E 72(2):026132

    Article  Google Scholar 

  • Coscia M, Rossetti G, Giannotti F, et al (2012) Demon: a local-first discovery method for overlapping communities. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 615–623

  • El Kouni IB, Karoui W, Romdhane LB (2020) Node importance based label propagation algorithm for overlapping community detection in networks. Expert Syst Appl 162(113):020

    Google Scholar 

  • Farkas I, Abel D, Palla G et al (2007) Weighted ´ network modules. New J Phys 9(6):180

    Article  Google Scholar 

  • Gao Y, Yu X, Zhang H (2021) Overlapping community detection by constrained personalized pagerank. Expert Syst Appl 173(114):682

    Google Scholar 

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    Article  MathSciNet  Google Scholar 

  • Gleiser PM, Danon L (2003) Community structure in jazz. Adv Complex Syst 6(04):565–573

    Article  Google Scholar 

  • Gregory S (2010) Finding overlapping communities in networks by label propagation. New J Phy 12(10):103018

    Article  Google Scholar 

  • Guimera R, Danon L, Diaz-Guilera A et al (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68(6):065103

    Article  Google Scholar 

  • Jeh G, Widom J (2002) Simrank: a measure of structural-context similarity. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 538–543

  • Jiang JQ, Dress AW, Yang G (2009) A spectral clustering-based framework for detecting community structures in complex networks. Appl Math Lett 22(9):1479–1482

    Article  MathSciNet  Google Scholar 

  • Khorasgani RR, Chen J, Zaiane OR (2010) Top leaders community detection approach in information networks. In: 4th SNA-KDD workshop on social network mining and analysis, Citeseer

  • Kim Y, Jeong H (2011) Map equation for link communities. Phys Rev E 84(2):026110

    Article  Google Scholar 

  • Kumpula JM, Kivela M, Kaski K et al (2008) Sequential algorithm for fast clique percolation. Phys Rev E 78(2):026109

    Article  Google Scholar 

  • Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78(4):046110

    Article  Google Scholar 

  • Lancichinetti A, Fortunato S, Kertesz J (2009) Detecting the overlapping and hierarchical community structure in complex networks. New J Phys 11(3):033015

    Article  Google Scholar 

  • Lancichinetti A, Radicchi F, Ramasco JJ et al (2011) Finding statistically significant communities in networks. PloS One 6(4):e18961

    Article  Google Scholar 

  • Lee J, Gross SP, Lee J (2012) Modularity optimization by conformational space annealing. Phys Rev E 85(5):056702

    Article  Google Scholar 

  • Li X, Hu Z, Wang H (2018) Combining nonnegative matrix factorization and sparse coding for functional brain overlapping community detection. Cogn Comput 10(6):991–1005

    Article  Google Scholar 

  • Liu Z, Xiang B, Guo W et al (2019) Overlapping community detection algorithm based on coarsening and local overlapping modularity. IEEE Access 7:57943–57955

    Article  Google Scholar 

  • Lusseau D, Schneider K, Boisseau OJ et al (2003) The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol 54(4):396–405

    Article  Google Scholar 

  • Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113

    Article  Google Scholar 

  • Nicosia V, Mangioni G, Carchiolo V et al (2009) Extending the definition of modularity to directed graphs with overlapping communities. J Stat Mech Theory Exp 2009(03):P03024

    Article  Google Scholar 

  • Palla G, Derenyi I, Farkas I et al (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818

    Article  Google Scholar 

  • Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3):036106

    Article  Google Scholar 

  • Ramesh A, Srivatsun G (2021) Evolutionary algorithm for overlapping community detection using a merged maximal cliques representation scheme. Appl Soft Comput 112(107):746

    Google Scholar 

  • Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123

    Article  Google Scholar 

  • Sathyakala M, Sangeetha M (2021) A weak clique based multi objective genetic algorithm for overlapping community detection in complex networks. J Ambient Intell Humaniz Comput 12(6):6761–6771

    Article  Google Scholar 

  • Shang R, Bai J, Jiao L et al (2013) Community detection based on modularity and an improved genetic algorithm. Phys A 392(5):1215–1231

    Article  Google Scholar 

  • Shen HW, Cheng XQ (2010) Spectral methods for the detection of network community structure: a comparative analysis. J Stat Mech Theory Exp 10:P10020

    Article  Google Scholar 

  • Shen H, Cheng X, Cai K et al (2009) Detect overlapping and hierarchical community structure in networks. Phys A 388(8):1706–1712

    Article  Google Scholar 

  • Sheng J, Wang K, Sun Z et al (2019) Overlapping community detection via preferential learning model. Phys A 527(121):265

    Google Scholar 

  • Subelj L, Bajec M (2011) Unfolding communities in large complex networks: combining defensive and offensive label propagation for core extraction. Phys Rev E 83(3):036103

    Article  MathSciNet  Google Scholar 

  • Van Lierde H, Chow TW, Chen G (2019) Scalable spectral clustering for overlapping community detection in large-scale networks. IEEE Trans Knowl Data Eng 32(4):754–767

    Article  Google Scholar 

  • Wang Y, Bu Z, Yang H et al (2021) An effective and scalable overlapping community detection approach: integrating social identity model and game theory. Appl Math Comput 390(125):601

    MathSciNet  MATH  Google Scholar 

  • Wu ZH, Lin YF, Gregory S et al (2012) Balanced multi-label propagation for overlapping community detection in social networks. J Comput Sci Technol 27(3):468–479

    Article  MathSciNet  Google Scholar 

  • Xie J, Szymanski BK (2012) Towards linear time overlapping community detection in social networks. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, pp 25–36

  • Xu M, Li Y, Li R et al (2019) Eadp: an extended adaptive density peaks clustering for overlapping community detection in social networks. Neurocomputing 337:287–302

    Article  Google Scholar 

  • Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33(4):452–473

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments which helped them in improving the quality of the paper. This paper is supported by the Key Scientific and Technological Research Projects in Henan Province (Grand No. 192102210125) and Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (SKLNST-2020-2-01) .

Funding

The funding has been received from Key Scientific and Technological Research Projects in Henan Province with Grant no. 192102210125; Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) with Grant no. SKLNST-2020-2-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Dong.

Ethics declarations

Conflict of interest

The authors of the paper certify that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Sarem, M. NOCD: a new overlapping community detection algorithm based on improved KNN. J Ambient Intell Human Comput 13, 3053–3063 (2022). https://doi.org/10.1007/s12652-022-03774-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-022-03774-4

Keywords

Navigation