Abstract
Coyote Optimization Algorithm (COA) is classified as both swarm intelligence and evolutionary heuristic algorithms. However, getting trapped in a poor local optimum and the low convergence speed are the weaknesses of COA obviously. Due to these weaknesses, this paper proposes a new algorithm named Chaotic Coyote Optimization Algorithm (CCOA) which focusing on COA equipped with chaotic maps. Through utilising ten well-known benchmark functions, experimental results are recorded in tables and drawn in figures to provide a sharp contrast. The performance of CCOA and COA are discussed, which proves CCOA outperforms COA guaranteeing rapid global convergence rate.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agrawal SK, Sahu OP (2015) Artificial bee colony algorithm to design two-channel quadrature mirror filter banks. Swarm Evol Comput 21:24–31. https://doi.org/10.1016/j.swevo.2014.12.001. http://www.sciencedirect.com/science/article/pii/S2210650214000819
Chuanwen J, Bompard E (2005a) A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation. Math Comput Simul 68(1):57–65. https://doi.org/10.1016/j.matcom.2004.10.003. http://www.sciencedirect.com/science/article/pii/S0378475404002599
Chuanwen J, Bompard E (2005b) A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment. Energy Convers Manag 46(17):2689–2696. https://doi.org/10.1016/j.enconman.2005.01.002. http://www.sciencedirect.com/science/article/pii/S0196890405000233
Clerc M, Kennedy J (2002) The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73. https://doi.org/10.1109/4235.985692
Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002. http://www.sciencedirect.com/science/article/pii/S2210650211000034
Dhiman G, Garg M, Nagar A, Kumar V, Dehghani M (2020) A novel algorithm for global optimization: Rat swarm optimizer. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02580-0
Dorigo M, Caro GD (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2, pp 1470–1477. https://doi.org/10.1109/CEC.1999.782657
Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science, pp 39–43. https://doi.org/10.1109/MHS.1995.494215
Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013a) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98. https://doi.org/10.1016/j.cnsns.2012.06.009. http://www.sciencedirect.com/science/article/pii/S1007570412002717
Gandomi AH, Yun GJ, Yang XS, Talatahari S (2013b) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18(2):327–340. https://doi.org/10.1016/j.cnsns.2012.07.017. http://www.sciencedirect.com/science/article/pii/S1007570412003292
Gwo-Ching L, Ta-Peng T (2006) Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting. IEEE Trans Evol Comput 10(3):330–340. https://doi.org/10.1109/TEVC.2005.857075
Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Gener Comput Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015. http://www.sciencedirect.com/science/article/pii/S0167739X19306557
Hong-Ji M, Peng Z, Rong-Yang W, Xiao-Jing H, Zhi X (2004) A hybrid particle swarm algorithm with embedded chaotic search. IEEE Conf Cybern Intell Syst 1:367–371. https://doi.org/10.1109/ICCIS.2004.1460442
Ibrahim RA, Ewees AA, Oliva D, Abd Elaziz M, Lu S (2019) Improved SALP swarm algorithm based on particle swarm optimization for feature selection. J Ambient Intell Humaniz Comput 10(8):3155–3169. https://doi.org/10.1007/s12652-018-1031-9
Jia D, Jiao Y, Zhang J (2009) Satisfactory design of IIR digital filter based on chaotic mutation particle swarm optimization. In: 2009 Third international conference on genetic and evolutionary computing, pp 48–51. https://doi.org/10.1109/WGEC.2009.172
Jiang BLW (1998) Optimizing complex functions by chaos search. Cybern Syst 29(4):409–419. https://doi.org/10.1080/019697298125678
Jinfeng Z (2011) Chaotic particle swarm optimization algorithm based on tent mapping for dynamic origin-destination matrix estimation. In: 2011 International conference on electric information and control engineering, pp 221–224. https://doi.org/10.1109/ICEICE.2011.5777924
Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x. https://doi.org/10.1007/s10898-007-9149-x
Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5(3):275–284. https://doi.org/10.1016/j.jcde.2017.12.006. http://www.sciencedirect.com/science/article/pii/S228843001730132X
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - international conference on neural networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
Kohli M, Arora S (2018) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Des Eng 5(4):458–472. https://doi.org/10.1016/j.jcde.2017.02.005. http://www.sciencedirect.com/science/article/pii/S2288430016301142
LüQ Shen G, Yu R (2003) A chaotic approach to maintain the population diversity of genetic algorithm in network training. Comput Biol Chem 27:363–371. https://doi.org/10.1016/S1476-9271(02)00083-X
Liu B, Wang L, Jin YH, Tang F, Huang DX (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271. https://doi.org/10.1016/j.chaos.2004.11.095. http://www.sciencedirect.com/science/article/pii/S0960077905000330
Mansouri N, Mohammad Hasani Zade B, Javidi MM (2019) Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory. Comput Ind Eng 130:597–633. https://doi.org/10.1016/j.cie.2019.03.006. http://www.sciencedirect.com/science/article/pii/S0360835219301421
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008. http://www.sciencedirect.com/science/article/pii/S0965997816300163
Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7. https://doi.org/10.1007/s00521-015-1870-7
Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002. http://www.sciencedirect.com/science/article/pii/S0965997816307736
Naseri A, Jafari Navimipour N (2019) A new agent-based method for QoS-aware cloud service composition using particle swarm optimization algorithm. J Ambient Intell Humaniz Comput 10(5):1851–1864. https://doi.org/10.1007/s12652-018-0773-8. https://doi.org/10.1007/s12652-018-0773-8
Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC), pp 1–8. https://doi.org/10.1109/CEC.2018.8477769
Saad E, Elhosseini MA, Haikal AY (2019) Culture-based artificial bee colony with heritage mechanism for optimization of wireless sensors network. Appl Soft Comput 79:59–73. https://doi.org/10.1016/j.asoc.2019.03.040. http://www.sciencedirect.com/science/article/pii/S1568494619301668
Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097. https://doi.org/10.1007/s00521-014-1597-x. https://doi.org/10.1007/s00521-014-1597-x
Sayed GI, Hassanien AE, Azar AT (2019) Feature selection via a novel chaotic crow search algorithm. Neural Comput Appl 31(1):171–188. https://doi.org/10.1007/s00521-017-2988-6. https://doi.org/10.1007/s00521-017-2988-6
Suganthan P, Hansen N, Liang J, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Nat Comput
Voraprateep J (2013) Robustness of Wilcoxon signed-rank test against the assumption of symmetry. Thesis. https://doi.org/10.13140/2.1.3241.3121
Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34. https://doi.org/10.1016/j.ins.2014.02.123. http://www.sciencedirect.com/science/article/pii/S0020025514002291
Wang J, Liu C, Wang J, Wu Y, Lin M, Cheng J (2018a) Physical-layer security for indoor visible light communications: secrecy capacity analysis. IEEE Trans Commun 66(12):6423–6436. https://doi.org/10.1109/TCOMM.2018.2859943
Wang J, Zhu J, Lin S, Wang J (2018b) Adaptive spatial modulation based visible light communications: SER analysis and optimization. IEEE Photonics J 10(3):1–14. https://doi.org/10.1109/JPHOT.2018.2834388
Xiang T, Liao X, Kw Wong (2007) An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl Math Comput 190(2):1637–1645. https://doi.org/10.1016/j.amc.2007.02.103. http://www.sciencedirect.com/science/article/pii/S0096300307002081
Yang XS (2010) Firefly algorithms for multimodal optimization, vol 5792. https://doi.org/10.1007/978-3-642-04944-6_14
Acknowledgements
This work was supported by grants from the National Key Research and Development Program of China under Contract No. 2016YFE0200200, the National Natural Science Funds of China under Contract No. 61701253 and 61801240.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tong, H., Zhu, Y., Pierezan, J. et al. Chaotic Coyote Optimization Algorithm. J Ambient Intell Human Comput 13, 2807–2827 (2022). https://doi.org/10.1007/s12652-021-03234-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-021-03234-5