An efficient hybrid methodology for detection of cancer-causing gene using CSC for micro array data | Journal of Ambient Intelligence and Humanized Computing
Skip to main content

Advertisement

An efficient hybrid methodology for detection of cancer-causing gene using CSC for micro array data

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Cancer is deadly diseases still exist with a lot of subtypes which makes lot of challenges in a biomedical research. The data available of gene expression with relevant gene selection with eliminating redundant genes is challenging for role of classifiers. The availability of multiple scopes of gene expression data is curse, the selection of gene is play vital role for refining gene expression data classification performance. The major role of this article is to derive a heuristic approach to pick the highly relevant genes in gene expression data for the cancer therapy. This article demonstrates a modified bio-inspired algorithm namely cuckoo search with crossover (CSC) for choosing genes from technology of micro array that are able to classify numerous cancer sub-types with extraordinary accuracy. The experiment results are done with five benchmark cancer gene expression datasets. The results depict that CSC is outperforms than CS and other well-known approaches. It returns 99% accuracy in a classification for the dataset namely prostate, lung and lymphoma for top 200 genes. Leukemia and colon dataset CSC is 96.98% and 98.54% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Altman NS (1995) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185

    MathSciNet  Google Scholar 

  • BilBan M, Buehler LK, Head S, Desoye G, Quaranta V (2002) Normalizing DNA microarray data. Mol Biol 4:57–64

    Google Scholar 

  • Cho SB, Won HH (2003) Machine learning in DNA microarray analysis for cancer classification. In: Proc Asia-Pac Bioinf Conf Bioinf, Adelaide, Australia, pp 189–198

  • Ding J, Wang Q, Zhang Q, Ye Q, Ma Y (2019) A hybrid particle swarm optimization-cuckoo search algorithm and its engineering applications. Math Probl Eng. https://doi.org/10.1155/2019/5213759

    Article  MATH  Google Scholar 

  • Dong X, Peng Q, Wu H, Chang Z, Yue Y, Zeng Y (2019) New principle for busbar protection based on the Euclidean distance algorithm. PLoS One 14(7):e0219320

    Article  Google Scholar 

  • Duan KB, Rajapakse JC, Wang H, Azuaje F (2005) Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans Nano Biosci 4(3):228–234

    Article  Google Scholar 

  • Goldberg DE (2009) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    Google Scholar 

  • Li Y, Kang K, Krahn JM, Croutwater N, Lee K, Umbach DM, Li L (2017) A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data. BMC Genomics 18(1):1–18

    Article  Google Scholar 

  • Liu H, Liu L, Zhang H (2010) Ensemble gene selection for cancer classification. Pattern Recogn 43(8):2763–2772

    Article  Google Scholar 

  • Madhavan P, Thamizharasi V, Ranjith Kumar MV, Suresh Kumar A, Jabin MA, Sampathkumar A (2019) Numerical investigation of temperature dependent water infiltrated D-shaped dual core photonic crystal fiber (D-DC-PCF) for sensing applications. Results Phys 13:102289

    Article  Google Scholar 

  • Maji P (2012) Mutual information-based supervised attribute clustering for microarray sample classification. IEEE Trans Knowl Data Eng 24(1):127–140

    Article  Google Scholar 

  • Maulik U, Chakraborty D (2014) Fuzzy preference based feature selection and semisupervised SVM for cancer classification. IEEE Trans Nanobiosci 13(2):152–160

    Article  Google Scholar 

  • McLachlan G, Do KA, Ambroise C (2004) Analyzing microarray gene expression data. John Wiley & Sons Inc, Hoboken

    Book  Google Scholar 

  • Momiao X, Li W, Zhao J, Li J, Eric B (2001) Feature (gene) selection in gene expression-based tumor classification. J Mol Genet Metab 73(3):239–247

    Article  Google Scholar 

  • Motieghader H, Najafib A, Sadeghic B, Masoudi-Nejad A (2017) A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata. Inform Med Unlocked 9:246–254

    Article  Google Scholar 

  • Ramana TV, Pandian A, Ellammal C, Jarin T, Rashed ANZ, Sampathkumar A (2019) Numerical analysis of circularly polarized modes in coreless photonic crystal fiber. Results Phys 13:102140

    Article  Google Scholar 

  • Ren Z, Wang W, Li J (2016) Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data. Int J Oncol 48(2):690–702

    Article  Google Scholar 

  • Sampathkumar A, Vivekanandan P (2018) Gene selection using multiple queen colonies in large scale machine learning. Int J Electr Eng 9(6):97–111

    Google Scholar 

  • Sampathkumar A, Vivekanandan P (2019) Gene selection using PLOA method in microarray data for cancer classification. J Med Imaging Health Inform 9(6):1294–1300

    Article  Google Scholar 

  • Simon R (2009) Analysis of DNA microarray expression data. Best Pract Res Clin Haematol 22(2):271–282

    Article  Google Scholar 

  • Tabakhi S, Najafi A, Ranjbar R, Moradi P (2015) Gene selection for microarray data classification using a novel ant colony optimization. Neurocomputing 168:1024–1036

    Article  Google Scholar 

  • Tsai YS, Aguan K, Pal NR, Chung IF (2011) Identification of single-and multiple-class specific signature genes from gene expression profiles by group marker index. PLoS One 6(9):e24259

    Article  Google Scholar 

  • Wang X, Gotoh O (2009) Accurate molecular classification of cancer using simple rules. BMC Med Genomics 2:64

    Article  Google Scholar 

  • Yang XS, Deb S (2010) Cuckoo search via lévy flights. In: Proceedings of World Congress on Nature and Biologically Inspired Computing, India, IEEE Publications, USA, pp 210214

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sivaram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampathkumar, A., Rastogi, R., Arukonda, S. et al. An efficient hybrid methodology for detection of cancer-causing gene using CSC for micro array data. J Ambient Intell Human Comput 11, 4743–4751 (2020). https://doi.org/10.1007/s12652-020-01731-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-01731-7

Keywords