Position servo controller design and implementation using low cost eddy current sensor for single axis active magnetic bearing | Journal of Ambient Intelligence and Humanized Computing Skip to main content
Log in

Position servo controller design and implementation using low cost eddy current sensor for single axis active magnetic bearing

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Eddy-current sensors are the most commonly used position sensors in a magnetic bearing application. Most commercial eddy current sensor outputs analog voltage of 0–2 V or 0–5 V in their measurement range. Such eddy current sensors are quite expensive and are in the price range of $2500 (USD). This paper presents a design of a $20 (USD) low-cost eddy current sensor capable of resolving displacements of 7 micron which is suitable for high-speed position control in active magnetic bearings. A novel method of directly converting the time period of the square wave signal from the eddy current sensor output for digital servo position feedback is employed in this design. This paper presents a scheme to implement digital position servo control algorithm on Texas Instruments C2000 real-time microcontroller to control the position of magnetically levitated object by controlling the magnetic actuator’s coil current. The magnetic actuators are electromagnetic coils that generate the magnetic force in the bearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anantachaisilp P, Lin Z (2017) Fractional order PID control of rotor suspension by active magnetic bearings. Actuators 6(1):1–31. https://doi.org/10.3390/act6010004

    Article  Google Scholar 

  • Boubaya N, Saad B, Maazouz M (2016) Radial active magnetic bearing control using fuzzy logic. Model Meas Control 89(1):92–100

    Google Scholar 

  • Chen T, Tsai H-R (2018) Application of industrial engineering concepts and techniques to ambient intelligence: a case study. J Ambient Intell Humaniz Comput 9(2):215–223

    Article  Google Scholar 

  • Dash SK, Swarup KS (2014) Design optimization of single axis thrust magnetic bearing actuator. J CPRI 10(1):1–12

    Article  Google Scholar 

  • Davani AM, Shirehjini AA, Daraei S (2018) Towards interacting with smarter systems. J Ambient Intell Humaniz Comput 9(1):187–209

    Article  Google Scholar 

  • Dimitri AS, El-Shafei A, Adly AA, Mahfoud J (2015) Magnetic actuator control of oil whip instability in bearings. IEEE Trans Magn 51(11):850–854

    Article  Google Scholar 

  • Jeranče N, Bednar N, Stojanović G (2013) An ink-jet printed eddy current position sensor. Sensors 4(3):5205–5219

    Article  Google Scholar 

  • Jia M, Sun J, Bao C (2017) Real-time multiple sound source localization and counting using a soundfield microphone. J Ambient Intell Humaniz Comput 8(6):695–706

    Article  Google Scholar 

  • Kip (1962) Fundamentals of eletricity and magnetism. McGraw Hill, London

    Google Scholar 

  • Koehler B, Denk J, Van Maanen G, Lang M (2017) Applying standard industrial components for active magnetic bearings. Actuators 6(8):1–9. https://doi.org/10.3390/act6010008

    Article  Google Scholar 

  • Lei S, Palazzolo A (2008) Control of flexible rotor systems with active magnetic bearings. J Sound Vib 314(2):19–38

    Article  Google Scholar 

  • Lei S, Palazzolo A, Na U, Kascak A (2000) Non-Linear fuzzy logic control for forced large motions of spinning shafts. J Sound Vib 235(3):435–449

    Article  Google Scholar 

  • Lim S, Min S (2012) Design optimization of permanent magnet actuator using multi-phase level-set model. IEEE Trans Magn 48(4):1641–1644

    Article  Google Scholar 

  • Maslen E, Montie D (2001) Sliding mode control of magnetic bearings: a hardware perspective. ASME J Eng Gas Turbines Power 123(4):878–885

    Article  Google Scholar 

  • Mystkowski A, Kaparin V, Kotta U, Pawluszewicz E, Tonso M (2017) Feedback linearization of an active magnetic bearing system operated with a zero-bias flux. Int J Appl Math Comput Sci 27(3):539–548

    Article  MathSciNet  MATH  Google Scholar 

  • Pallàs-Areny R, Webster JG (2000) Sensors and signal conditioning, 2nd edn. Wiley, New York

    Google Scholar 

  • Passenbrunner J, Silber S, Amrhein W (2015) Investigation of a digital eddy current sensor. In: IEEE international conference on electric machines and drives, pp 728–732

  • Rao LV, Kakoty SK (2014) Design of compact active magnetic bearing. Int J Appl Sci Eng Res 3(3):741–754

    Google Scholar 

  • Ren X-J, Yun LE, Kun W (2017) A rotor displacement measurement method for magnetic bearing based on coil inductance. In: International conference on test, measurement and computational method, pp 31–36

  • Roach SD (1998) Designing and building an eddy current position sensor. Sensors 15(9):1–16

    Google Scholar 

  • Schweitzer G, Bleuler H, Traxler A (2003) Active magnetic bearings: basics, properties and applications. ETH, Zurich

    Google Scholar 

  • Schweitzer G, Maslen EH et al (2009) Magnetic bearings: theory, design and application to rotating machinery. Springer, New York

    Google Scholar 

  • Velandia EFR, Santisteban J, Bruno P (2005) A displacement estimator for magnetic bearings. ABCM Symp Ser Mechatron 2(1):68–75

    Google Scholar 

  • Vyroubal D (2004) Impedance of the eddy-current displacement probe: the transformer model. IEEE Trans Instrum Meas 53(2):384–391

    Article  Google Scholar 

  • Wang J, Binder A (2016) Position estimation for self-sensing magnetic bearings based on the current slope due to the switching amplifier. Eur Power Electron Drives (EPE) J 26(1):125–141. https://doi.org/10.1080/09398368.2016.1273445

    Article  Google Scholar 

  • Yu WT, Li HW, Liu SQ, Zhang YP (2013) The application design of inductance sensor in active magnetic bearing. Appl Mech Mater 364(1):257–261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Raghunathan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 7311 KB)

Supplementary material 2 (MP4 5272 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghunathan, P., Logashanmugam, E. Position servo controller design and implementation using low cost eddy current sensor for single axis active magnetic bearing. J Ambient Intell Human Comput 10, 3481–3492 (2019). https://doi.org/10.1007/s12652-018-1064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-1064-0

Keywords

Navigation