Abstract
Context analysis is a research field that is attracting growing interest in recent years, especially due to the encouraging results carried out by the semantic-based approach. Anyway, semantic strategies entail the use of trackers capable to show robustness to long-term occlusions, viewpoint changes and identity swap that represent the main problem of many tracking-by-detection solutions. This paper proposes a robust tracking-by-detection framework based on dense SIFT descriptors in combination with an ad-hoc target appearance model update able to overtake the discussed issues. The obtained performances show how our tracker competes with state-of-the-art results and manages occlusions, clutter, changes of scale, rotation and appearance, better than competing tracking methods.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271. doi:10.1109/TPAMI.2007.35
Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632. doi:10.1109/TPAMI.2010.226
Badrinarayanan V, Perez P, Clerc FL, Oisel L (2007) Probabilistic color and adaptive multi-feature tracking with dynamically switched priority between cues. In: 2007 IEEE 11th international conference on computer vision, pp 1–8. doi:10.1109/ICCV.2007.4408955
Birchfield S (1998) Elliptical head tracking using intensity gradients and color histograms. In: Proceedings. 1998 IEEE Computer Society conference on computer vision and pattern recognition (Cat. No.98CB36231), pp 232–237. doi:10.1109/CVPR.1998.698614
Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643. doi:10.1109/TPAMI.2005.205
Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–575. doi:10.1109/TPAMI.2003.1195991
Crispim CF, Bathrinarayanan V, Fosty B, Konig A, Romdhane R, Thonnat M, Brémond F (2013) Evaluation of a monitoring system for event recognition of older people. In: 10th IEEE international conference on advanced video and signal based surveillance, AVSS 2013, Krakow, Poland, August 27–30, 2013, pp 165–170, doi:10.1109/AVSS.2013.6636634
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society conference on computer vision and pattern recognition (CVPR’05), vol 1, pp 886–893. doi:10.1109/CVPR.2005.177
Du W, Piater J (2008) A probabilistic approach to integrating multiple cues in visual tracking. Springer, Berlin, pp 225–238. doi:10.1007/978-3-540-88688-4_17
Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338. doi:10.1007/s11263-009-0275-4
Gaüzère B, Greco C, Ritrovato P, Saggese A, Vento M (2015) Semantic web technologies for object tracking and video analytics. Springer International Publishing, Cham, pp 574–585. doi:10.1007/978-3-319-27863-6_53
Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: Proceedings of the 10th European conference on computer vision: part I, ECCV ’08. Springer-Verlag, Berlin, Heidelberg, pp 234–247. doi:10.1007/978-3-540-88682-2_19
Gu S, Zheng Y, Tomasi C (2011) Efficient visual object tracking with online nearest neighbor classifier. In: Proceedings of the 10th Asian conference on computer vision—volume part I, ACCV’10. Springer, Berlin, Heidelberg, pp 271–282. http://dl.acm.org/citation.cfm?id=1964320.1964348
Hare S, Golodetz S, Saffari A, Vineet V, Cheng MM, Hicks SL, Torr PHS (2016) Struck: Structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096–2109. doi:10.1109/TPAMI.2015.2509974
Isard M, Blake A (1998) Icondensation: unifying low-level and high-level tracking in a stochastic framework. Springer, Berlin, pp 893–908. doi:10.1007/BFb0055711
Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311. doi:10.1109/TPAMI.2003.1233903
Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422. doi:10.1109/TPAMI.2011.239
Lascio RD, Foggia P, Percannella G, Saggese A, Vento M (2013) A real time algorithm for people tracking using contextual reasoning. Comput Vis Image Underst 117(8):892–908. doi:10.1016/j.cviu.2013.04.004. http://www.sciencedirect.com/science/article/pii/S1077314213000908
Lee KC, Ho J, Yang MH, Kriegman D (2005) Visual tracking and recognition using probabilistic appearance manifolds. Comput Vis Image Underst 99(3):303–331. doi:10.1016/j.cviu.2005.02.002
Leibe B, Schindler K, Cornelis N, Van Gool L (2008) Coupled object detection and tracking from static cameras and moving vehicles. IEEE Trans Pattern Anal Mach Intell 30(10):1683–1698. doi:10.1109/TPAMI.2008.170
Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4(4). doi:10.1145/2508037.2508039
Liu B, Huang J, Kulikowski C, Yang L (2013) Robust visual tracking using local sparse appearance model and k-selection. IEEE Trans Pattern Anal Mach Intell 35(12):2968–2981. doi:10.1109/TPAMI.2012.215
Liu C, Yuen J, Torralba A (2011) Sift flow: Dense correspondence across scenes and its applications. IEEE Trans Pattern Anal Mach Intell 33(5):978–994. doi:10.1109/TPAMI.2010.147
Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 1150–1157. doi:10.1109/ICCV.1999.790410
Matthews I, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern Anal Mach Intell 26(6):810–815. doi:10.1109/TPAMI.2004.16
Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272. doi:10.1109/TPAMI.2011.66
Moreno-Noguer F, Sanfeliu A, Samaras D (2008) Dependent multiple cue integration for robust tracking. IEEE Trans Pattern Anal Mach Intell 30(4):670–685. doi:10.1109/TPAMI.2007.70727
Pang Y, Ling H (2013) Finding the best from the second bests—inhibiting subjective bias in evaluation of visual tracking algorithms. In: 2013 IEEE international conference on computer vision, pp 2784–2791. doi:10.1109/ICCV.2013.346
Park DW, Kwon J, Lee KM (2012) Robust visual tracking using autoregressive hidden markov model. In: 2012 IEEE conference on computer vision and pattern recognition, pp 1964–1971. doi:10.1109/CVPR.2012.6247898
Perez P, Vermaak J, Blake A (2004) Data fusion for visual tracking with particles. Proc IEEE 92:495–513. doi:10.1109/JPROC.2003.823147
Pernici F, Bimbo AD (2014) Object tracking by oversampling local features. IEEE Trans Pattern Anal Mach Intell 36(12):2538–2551. doi:10.1109/TPAMI.2013.250
Ramanan D, Forsyth DA, Zisserman A (2007) Tracking people by learning their appearance. IEEE Trans Pattern Anal Mach Intell 29(1):65–81. doi:10.1109/TPAMI.2007.22
Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141. doi:10.1007/s11263-007-0075-7
Salti S, Cavallaro A, Stefano LD (2012) Adaptive appearance modeling for video tracking: Survey and evaluation. IEEE Trans Image Process 21(10):4334–4348. doi:10.1109/TIP.2012.2206035
Song S, Xiao J (2013) Tracking revisited using rgbd camera: Unified benchmark and baselines. In: Proceedings of the 2013 IEEE international conference on computer vision, ICCV ’13. IEEE Computer Society, Washington, DC, USA, pp 233–240. doi:10.1109/ICCV.2013.36
Spengler M, Schiele B (2003) Towards robust multi-cue integration for visual tracking. Mach Vis Appl 14(1):50–58. doi:10.1007/s00138-002-0095-9
Stenger B, Woodley T, Cipolla R (2009) Learning to track with multiple observers. In: 2009 IEEE conference on computer vision and pattern recognition, pp 2647–2654. doi:10.1109/CVPR.2009.5206634
Supancic JS, Ramanan D (2013) Self-paced learning for long-term tracking. In: Proceedings of the 2013 IEEE conference on Computer vision and pattern recognition, CVPR ’13. IEEE Computer Society, Washington, DC, USA, pp 2379–2386. doi:10.1109/CVPR.2013.308
Tordoff B, Murray DW (2002) Guided sampling and consensus for motion estimation. Springer, Berlin, pp 82–96. doi:10.1007/3-540-47969-4_6
Torr P, Zisserman A (2000) Mlesac: A new robust estimator with application to estimating image geometry. Comput Vis Image Underst 78(1):138–156. doi:10.1006/cviu.1999.0832. http://www.sciencedirect.com/science/article/pii/S1077314299908329
Vedaldi A, Fulkerson B (2010) Vlfeat: An open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM international conference on multimedia, MM ’10. ACM, New York, NY, USA, pp 1469–1472. doi:10.1145/1873951.1874249
Wang Q, Chen F, Xu W, Yang MH (2011) An experimental comparison of online object-tracking algorithms. In: Proceedings of SPIE 8138, Wavelets and Sparsity XIV, 81381A. doi:10.1117/12.895965.
Wu B, Nevatia R (2007) Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. Int J Comput Vis 75(2):247–266. doi:10.1007/s11263-006-0027-7
Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: 2013 IEEE conference on computer vision and pattern recognition, pp 2411–2418. doi:10.1109/CVPR.2013.312
Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Recent advances and trends in visual tracking: a review. Neurocomputing 74(18):3823–3831. doi:10.1016/j.neucom.2011.07.024. http://www.sciencedirect.com/science/article/pii/S0925231211004668
Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4). doi:10.1145/1177352.1177355
Yu Q, Dinh TB, Medioni G (2008) Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Proceedings of the 10th European conference on computer vision: part II, ECCV ’08. Springer, Berlin, Heidelberg, pp 678–691. doi:10.1007/978-3-540-88688-4_50
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mazzeo, P.L., Spagnolo, P., Leo, M. et al. Dense descriptor for visual tracking and robust update model strategy. J Ambient Intell Human Comput 11, 3089–3099 (2020). https://doi.org/10.1007/s12652-017-0461-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-017-0461-0